
Merkhilfe v24.10.2025

Zuweisungen
k = 8 , x = 3 .2
x += 1 , k∗=2 # Kurzformen

Variablennamen
entfernungZurWand = 3 .2 # camel case
ent fernung zur wand = 3 .2 # snake case

pr in t
p r i n t (k) , p r i n t (k , x)

pr in t mit f−S t r i ng s
p r i n t (f ’ Das Doppelte von {x} i s t {2∗x } . ’)
p r i n t (f ”Pi auf zwei Nachkommastellen : { pi : . 2 f }”)

E i n z e i l i g e r Kommentar
’ ’ ’ meh r z e i l i g e r
Kommentar ’ ’ ’

Arithmet i sche Operationen
+, −, ∗ , / , ∗∗ Exponent iat ion
% modulo , // ganzzah l i g e D iv i s i on

Verg l e i ch sope ra to r en
i > j , i >= j , i < j , i <= j , i == j , i != j

Boolesche Operatoren
and , or , not

Input
s = input (’Name : ’)
k = in t (input (’ Ganze Zahl : ’))
x = f l o a t (input (’ Zahl : ’))

Bedingungen
i f x > 10 :

p r i n t (’A’)
e l i f x > 0 :

p r i n t (’B’)
e l s e :

p r i n t (’C’)

Bedingte Zuweisung
s = ’ gerade ’ i f x % 2 == 0 e l s e ’ ungerade ’

while−S c h l e i f e
x = 0 :
whi l e x < 10 :

x+=1

whi le True :
i f x == 20 :

break
x+=1

for−S c h l e i f e mit range
f o r i in range (5) : # 0 ,1 ,2 , 3 , 4
f o r i in range (2 , 5) : # 2 ,3 ,4
f o r i in range (2 , 9 , 2) : # 2 ,4 ,6 ,8
f o r i in range (3 ,−1 ,−1): # 3 ,2 ,1 ,0

break : Schei fenabbruch , h i n t e r der S c h l e i f e gehts we i t e r
cont inue : s o f o r t nä ch s t e r Sch le i f endurchgang

St r i ng s
s = ’ ’ # l e e r e r S t r ing
s = ’ Hallo ’ , s = ”Hal lo ”
k = len (s) # Länge des S t r i ng s
s = s1 + s2 # Konkatenieren
s1 = 3∗ s # Verv i e l f a chen
s1 = s . upper () , s . lower () # a l l e s in Klein−/Großbuchstaben
k = s . count (’ abi ’) # Vorkommen z ä h len
s1 = s . r ep l a c e (’ abi ’ , ’ oha ’) # Te i l s t r i n g s e r s e t z en
b = ’ abi ’ in s , ’ abi ’ not in s # Te i l s t r i n g vorhanden?

Indexing be i S t r i ng s
s [0] , s [1] # e r s t e s , zwe i t e s Zeichen
s [l en (s)−1] , s [−1] # l e t z t e s Zeichen
s [−2] # v o r l e t z t e s Zeichen

S l i c i n g be i S t r i ng s
s [: 3] , s [−3 :] # e r s t e 3 , l e t z t e 3 Zeichen
s [2 :] , s [: −2] # auß er e r s t en 2 , l e t z t e n 2 Zeichen
s [1 : 5] # Te i l s t r i n g von Index 1 b i s (a u s s c h l i e ß l i c h) 5

Sch l e i f e n durch S t r i ng s
f o r i in range (l en (s)) : # Var iab le i l ä u f t durch Index
f o r c in s : # Var iab le c l ä u f t durch Zeichen

Merkhilfe 2

Funktionen
de f c a l c (x , y) : # Kopf mit Name und Parametern x und y

z = x + y
z = 3∗ z + 1
return z

a = ca l c (2 , 4) # Aufruf mit den Argumenten 2 und 4

eingebaute Funktionen
k = ord (’ a ’) # Unicode−Zahl
c = chr (65) # Zeichen zur Unicode−Zahl
max(a) , min (a) , sum(a) # be i L i s t en oder Tuples von Zahlen

Li s t en
a = [] # l e e r e L i s t e
a = [1 , 2 , 3] , a = [’Montag ’ , ’ Dienstag ’]
k = len (a) # Länge der L i s t e
a1 = a ∗ 5 # L i s t e v e r v i e l f a c h en
b = 5 in a # I s t 5 in L i s t e ?

L i s t e ändern
a [1] = 5 # Zuweisung
a . append (5) # hinten was dranh ängen
x = a . pop () # hinten was herausnehmen

L i s t e s o r t i e r e n
b = sor t ed (a) , b = sor t ed (a , r e v e r s e=True)

Indexing , S l i c i n g und S ch l e i f e n wie be i S t r i ng s

St r ing s in Wort l i s t e a u f t e i l e n
a = s . s p l i t ()

Unpacking
x , y = [5 , 2] # g l e i c h z e i t i g e Zuweisung mehrerer Var iablen

List−Comprehensions
a = [x∗x f o r x in range (1 , 1 0)]
b = [2∗ x f o r x in a i f x % 3 == 0]
a = [i n t (x) f o r x in e ingabe . s p l i t ()] # Eingabe mehrerer Zahlen

D i c t i o n a r i e s
m = {} , m = d i c t () # l e e r e s d i c t
m = { ’ Thorben ’ : 2 , ’ Soeren ’ : 3 , ’Maike ’ : 2 }
l en (m) # Anzahl key−value Paare

v = m[’ Soeren ’] # v i s t va lue an der S t e l l e Soeren

m[’ Soeren ’] = 4 # hinzu f ügen bzw . ändern des va lue s
x = m. pop (’ Soeren ’) # Eintrag l ö schen , x i s t g e l ö s ch t e r va lue
’ Lena ’ in m # i s t Lena key in m?

l i s t (m. keys ()) , l i s t (m. va lue s ()) # L i s t e a l l e r keys / va lue s

S c h l e i f e durch e in d i c t :
f o r k in m: # a l l e keys durch laufen

p r in t (k , m[k])

Tuple
t = (3 , 1 , 6)
t = () , t = (1 ,) # l e e r e s Tuple , Tuple mit einem Element
l en (t) # Länge des Tuples

Indexing , S l i c i n g , S ch l e i f en , Unpacking wie be i L i s t en

a = l i s t (tup) # Tuple in L i s t e umwandeln
tup = tup l e (a) # L i s t e in Tuple umwandeln
m = { (1 , 2) : 10 , (3 , 4) : 20} # Tuples können keys von d i c t s s e i n

Zu f a l l
import random
random . rand int (0 , 20) # in t Zu f a l l s z a h l ∈ [0, 20]
random . random () # zuf ä l l i g e f l o a t ∈ [0, 1)

Dateien l e s en (open/ c l o s e nur im e r s t en B e i s p i e l)
f = open (’ input . txt ’ , encoding=’utf −8 ’)
z e i l e = f . r e ad l i n e () . s t r i p () # Eine Z e i l e l e s e n
f . c l o s e ()

n = in t (f . r e ad l i n e ()) # e r s t e Z e i l e i s t Anzahl Fo l g e z e i l e n
data = []
f o r i in range (n) :

data . append (i n t (f . r e ad l i n e ())) # ganze Zahlen in Fo l g e z e i l e n

f o r i in range (n) :
k , name = f . r e ad l i n e () . s p l i t () # Fo l g e z e i l e : 10 Lena
data . append ((i n t (k) , name))

data = [i n t (x) f o r x in f . r e ad l i n e () . s p l i t ()] # mehrere Zahlen in Z e i l e

Dateien s ch re iben
f = open (’ output . txt ’ , encoding=’utf −8 ’ ,mode=’w’)
p r i n t (f ’ Die Summe von {x} und {y} i s t {x+y } . ’ , f i l e=f)
f . c l o s e ()

