40. Bundeswettbewerb Informatik 2. Runde

Aufgabe: Mullabfuhr

1.1 Losungsidee

Wir betrachten das StraBennetz als Graphen. Sei G = (V,E) der Graph, der das Straennetz
darstellt. Dabei ist V die Menge der Knoten (Kreuzungen) und E die Menge der Kanten (Stra-
Ben).

Das gestellte Problem ist sehr schwer. Genauer gesagt ist es NP-schwer, selbst wenn man nur
zwei statt fiinf Tage betrachtet.! Gleichzeitig enthalten die vorgegebenen Beispieleingaben bis
zu 1000 Knoten. Wir kdnnen also nicht erwarten, eine optimale Losung zu finden. Stattdessen
setzen wir auf Heuristiken.

Dazu werden wir in zwei Schritten vorgehen:

1. Finde einen Weg, der am Startknoten anfingt und aufthort und der alle Kanten mindestens
einmal besucht.

2. Teile den gefundenen Weg in fiinf moglichst gleich grof3e Teile auf, wobei Anfang und
Ende jedes Abschnitts mit dem Start verbunden werden miissen.

Diese beiden Teile konnen wir optimal 16sen. Es ist jedoch wichtig zu erkennen, dass die
Gesamtlosung trotzdem nicht immer optimal ist: Eventuell gébe es einen etwas lidngeren (oder
einen ebenso langen) Gesamtweg, der sich aber besser in fiinf Teile teilen ldsst und dadurch
eine bessere Losung erzielen wiirde.

Finden eines Weges, der alle Kanten abdeckt

Die Aufgabe, einen moglichst kurzen Weg zu finden, der alle Kanten abdeckt, ist dhnlich zu
dem Eulerkreisproblem. Dabei wird ein Weg gesucht, der jede Kante genau einmal besucht.

Sei der Grad eines Knotens v die Anzahl Kanten, die an v angrenzen. Ein Eulerkreis existiert
genau dann, wenn jeder Knoten im Graphen einen geraden Grad hat. Das ldsst sich dadurch
begriinden, dass jedes Mal, wenn der Weg einen Knoten besucht, eine angrenzende Kante ver-
braucht wird, und man eine weitere Kante braucht, um den Knoten wieder zu verlassen. Wenn
ein Knoten einen ungeraden Grad hat, wiirde man unweigerlich an diesem Knoten stecken blei-
ben. Ein Eulerkreis ldsst sich mit dem Algorithmus von Hierholzer effizient finden, wenn er
existiert. Dabei geht man zuerst einen beliebigen Pfad durch den Graphen, bis man wieder
beim Ausgangsknoten ankommt. Es ist garantiert, dass man wieder beim Ausgangsknoten an-
kommt, da alle Knoten einen geraden Grad haben. Dann betrachtet man einen Knoten, bei
dem noch angrenzende Kanten unbesucht sind und sucht einen weiteren Pfad von dort aus, und
fiigt diesen in den bisherigen Kreis ein. Dies wird so lange wiederholt, bis alle Kanten besucht
wurden.

Falls in dem gegebenen Graphen also nun alle Knoten einen geraden Grad haben, konnen wir
durch Bestimmung des Eulerkreises verhiltnismiiBig einfach den kiirzesten Weg finden, der alle
Kanten abdeckt. Was machen wir nun, wenn ein solcher Eulerkreis nicht existiert?

Wenn man das gestellte Problem effizient 16sen kdnnte, dann kdnnte man auch eine Variante von Subset Sum
effizient 16sen, indem man fiir jedes Element der gegebenen Zahlenmenge eine Kante vom Startknoten zum
Startknoten mit dieser Linge hinzufiigt. Eine effiziente Losung des Miillabfuhrproblems fiinde nun eine Auf-
teilung der Kanten in zwei Teilmengen mit gleich groBer Summe, wenn vorhanden. Es ist aber bekannt, dass
dies NP-schwer ist, daher muss auch das Miillabfuhrproblem NP-schwer sein.

40. Bundeswettbewerb Informatik 2. Runde

2 5

8
1
7
9 5
15
4

Abbildung 1.1: Beispiel fiir einen Straf3enplan, wo jede Kreuzung durch einen Knoten und jede
Strafle als eine Kante représentiert ist. Die Linge der Stra3e ist das Gewicht der
Kante. Knoten mit geradem Grad sind grau und Knoten mit ungeradem Grad rot
markiert. Rechts sind die beiden roten Knoten mit einer Metakante verbunden,
welche als Gewicht die kiirzeste Verbindung zwischen den beiden Knoten hat.
In dem rechten Stra3enplan gibt es damit einen Eulerzyklus.

In dem Fall werden wir einige Kanten mehrfach besuchen miissen. Unsere Aufgabe ist es, die
Gesamtlidnge der mehrfach besuchten Kanten zu minimieren.

Betrachten wir einmal alle Knoten in dem gegebenen Graphen mit ungeradem Grad. Wenn wir
jeweils zwel dieser Knoten mit einer neuen Kante verbinden, dann hitte der resultierende Graph
einen Eulerzyklus. Praktischerweise wird es auch immer eine gerade Anzahl solcher Knoten
geben, da jede Kante zwei Enden hat und daher die Gesamtzahl der Start- und Endpunkte der
Kanten gerade ist. Wir fiigen nun also Metakanten in den Graphen ein. Diese haben jeweils
die Linge des kiirzesten Weges zwischen zwei Knoten. Wir verbinden je zwei Knoten mit
ungeradem Grad mit einer Metakante, sodass nachher jeder Knoten einen geraden Grad hat.
Auf dem entstehenden Graphen konnen wir nun einen Eulerzyklus finden. Dieser deckt alle
urspriinglichen Kanten ab. Die Linge entspricht der Linge aller urspriinglichen Kanten plus der
Linge der eingefiigten Kanten. Wir miissen also nur die Gesamtlinge der eingefiigten Kanten
minimieren.? Das Vorgehen ist exemplarisch in Abbildung 1.1 dargestellt.

Wir miissen nun also alle Knoten mit ungeradem Grad so in Paare aufteilen, dass die Summe
der kiirzesten Wege zwischen den Partnern minimal ist. Die kiirzesten Wege zwischen allen
relevanten Knoten konnen wir zum Beispiel mit dem Dijkstra-Algorithmus oder auch mit dem
Algorithmus von Floyd und Warshall finden. Die Aufteilung in Paare ist bekannt als Mat-
ching. Konkret handelt es sich um Min Cost Perfect Matching. Im Gegensatz zu Matching auf
bipartiten Graphen ist Matching auf allgemeinen Graphen leider umsténdlich. Trotzdem gibt
es mit dem Blossom-Algorithmus auch fiir dieses Problem eine bekannte Losung. Falls man
diesen jedoch nicht implementieren mochte, kann man auch schon gute Ergebnisse erreichen,
indem man die Knotenpaare mit einem gierigen Algorithmus zuweist — also zum Beispiel {iber
alle Knoten iteriert, und jedem nicht zugewiesenen Knoten den ebenfalls nicht zugewiesenen
Knoten mit der kleinsten Distanz zuweist.

2Es ist iibrigens auch garantiert, dass wir einen Weg minimaler Linge mit dieser Methode finden konnen, also
in mindestens einem optimalen Weg alle mehrfach besuchten Kanten zu solchen Metakanten zusammengefiigt
werden konnen. Den Beweis bleiben wir hier jedoch schuldig.

40. Bundeswettbewerb Informatik 2. Runde

Aufteilung des Weges in Tagesabschnitte

Nun haben wir also einen Weg, der alle Kanten abdeckt und so kurz wie méglich ist. Die néchste
Aufgabe ist, diesen in fiinf Teile aufzuteilen, sodass die Linge des ldngsten Teils minimal ist.
Komplikationen dabei sind:

* Der Weg kann jeweils nur an den Knoten, nicht in der Mitte einer Kante geteilt werden.
* Die Enden jedes Abschnittes miissen mit dem Startknoten verbunden werden.

Betrachten wir zunichst einmal eine etwas einfachere Aufgabenstellung: Gegeben eine Linge
x, konnen wir den Zyklus in 5 Tagesabschnitte der Lange maximal x aufteilen? Um das zu beant-
worten, starten wir beim Startknoten und wihlen von dort den ldngsten Tagesabschnitt, dessen
Lénge hochstens x ist. Fiir den nidchsten Tag starten wir bei der ersten Kante, die noch nicht
verwendet wurde, und wihlen von dort wieder den ldngsten Abschnitt mit Linge hochstens x,
und fithren das fiir die iibrigen Tage fort. Wenn wir nach fiinf Tagen alle Kanten abgedeckt
haben, ist die Linge x ausreichend.

Wir kénnen nun eine binédre Suche ausfithren, um das kleinste x zu finden, fiir das wir den Zyklus
noch in entsprechend lange Tagesabschnitte teilen konnen. Wir starten mit einem Minimalwert,
fiir den bekannt ist, dass er als Linge der Abschnitte nicht ausreicht (zum Beispiel 0) und
einem Maximalwert, der auf jeden Fall ausreichen wiirde (zum Beispiel die Gesamtldnge des
Zyklus). Dann priifen wir fiir den Mittelwert zwischen Minimalwert und Maximalwert, ob er
ausreichend ist. Wenn ja, ist der gesuchte Wert héchstens so grof3 wie der Mittelwert, ansonsten
ist er grofer. Dementsprechend werden die Maximal- und Minimalwerte angepasst und das
Verfahren wiederholt. So finden wir sehr schnell das gesuchte x. Dieses wird die Linge des
langsten Tagesabschnitts in unserer Losung sein.

Laufzeit

Um die Laufzeit des Algorithmus betrachten zu kénnen, definieren wir erst einmal N = |V/|
und M = |E|, i.e. N ist die Anzahl Knoten in dem vorgegeben Graphen und M ist die Anzahl
Kanten. Sei auBerdem L die Gesamtlinge aller Kanten in der Eingabe.

Zuerst findet der Algorithmus Paare von Knoten mit ungeradem Grad. Dazu miissen wir zu-
erst die kiirzesten Wege zwischen allen Paaren solcher Knoten finden. Der Algorithmus von
Floyd und Warshall braucht hierfiir eine Laufzeit in ¢(N?). Mit Anwendung des Dijkstra-
Algorithmus fiir jeden Knoten erhalten wir stattdessen eine Laufzeit von &'(N(N + M)logN),
was besser ist, sofern M deutlich kleiner als N2 ist.

Das Zuteilen der Paare selbst kann dann durchaus in linearer Laufzeit (0 (N + M)) geschehen,
falls hier ein Greedy-Algorithmus gewihlt wird. Falls man jedoch den Blossom-Algorithmus
von Edmonds verwendet, um optimale Ergebnisse zu erhalten, wird es linger dauern. Der
Blossom-Algorithmus kann mit einer Laufzeit von &' (n’m) fiir n Knoten und m Kanten um-
gesetzt werden. Relevant sind hier jedoch nicht die Kanten in dem Ausgangsgraphen, sondern
die Knoten mit ungeradem Grad (bis zu N) und alle &'(N?) kiirzesten Wege zwischen ihnen
als Kanten. Die Laufzeit ist also bis zu &(N*). Jedoch haben hiufig deutlich weniger Knoten
einen ungeraden Grad. In den Beispielen vom BWINF sind es nur maximal 240. Auferdem
wird die angegebene Worst-Case-Laufzeit des Blossom-Algorithmus nur selten erreicht. Daher
kann dieser Schritt auf allen vorgegebenen Beispielen in unter einer Sekunde durchlaufen, wenn

40. Bundeswettbewerb Informatik 2. Runde

eine effiziente Implementierung dieses Algorithmus verwendet wird.>.

Danach muss auf dem Graphen ein Eulerkreis gefunden werden. Der Algorithmus von Hier-
holzer benétigt hierfiir nur lineare Laufzeit, also O(N +M).

Zum Aufteilen des Pfades werden logarithmisch viele Iterationen der bindren Suche benétigt,
das sich die GroBe des betrachteten Intervalls in jedem Schritt halbiert. Jede Iteration betrach-
tet dabei den gesamten Zyklus der Linge ¢&'(M). Dieser Schritt hat also eine Laufzeit von
O(MloglL).

Die Gesamtlaufzeit ist also (bei Verwendung des Floyd-Warshall- und des Blossom-Algorith-
mus) &(N>+N*+4 (N+M)+MlogL). Dies lisst sich grob zu & (N*) vereinfachen, da M < N?
und auch L zumindest in den vorgegebenen Eingaben nicht iibermaBig grof ist. Auch in der
Praxis stellt sich heraus, dass der Blossom-Algorithmus die Laufzeit dominiert.

Weitere Verbesserungen

Da es sich bei dem vorgestellten Algorithmus nur um eine Heuristik handelt, sind die Ergeb-
nisse nicht optimal. Bei einer guten Implementierung liegt die Laufzeit auBerdem erst bei ca.
einer Sekunde auf den grofiten vorgegebenen Beispielen. Daher kann man sich Gedanken ma-
chen, wie die Ergebnisse noch weiter verbessert werden konnen. Ein paar Ideen sind hier grob
skizziert:

* Ein Graph, der einen Eulerzyklus besitzt, hat typischerweise nicht nur einen, sondern
viele verschiedene Eulerzyklen. Die Auswahl des konkreten Eulerzyklus kann auflerdem
einen Einfluss auf die Qualitiit des Ergebnisses haben. Es ist jedoch nicht direkt klar, wel-
cher Eulerzyklus der beste ist. Bisher finden wir einen beliebigen. Da jedoch die Laufzeit
fiir das Finden des Eulerzyklus und die darauf folgende Aufteilung des Zyklus bisher
nur einen kleinen Teil der Gesamtlaufzeit ausmacht, konnen wir auch einfach mehrere,
z.B. 100 verschiedene Eulerzyklen ausprobieren, um mit gewisser Wahrscheinlichkeit
ein etwas besseres Ergebnis zu erreichen. Verschiedene Eulerzyklen konnen zum Bei-
spiel durch zufilliges durchmischen der Kanten jedes Knotens vor der Eulerzyklussuche
gefunden werden.

* Der Eulerzyklus, der gefunden wurde, enthilt einige Kanten, die wir nachtrédglich einge-
fiigt haben, um einen Eulerzyklus zu ermdglichen. Diese Kanten miissen nicht unbedingt
befahren werden. Falls die erste oder letzte Kante eines Tagesabschnitts eine solche Kan-
te ist, konnen wir sie entfernen und den Tagesabschnitt dadurch kiirzer machen. Fiir
moglichst gute Ergebnisse sollte dies auch bereits bei der Aufteilung in Tagesabschnitte
beriicksichtigt werden.

* Bisher gehen wir davon aus, dass unser Eulerzyklus einen definierten Start- beziehungs-
weise Endpunkt hat, und dass der erste Tagesabschnitt auch an diesem Punkt startet. Es
kann sich jedoch lohnen, zu erlauben, dass ein Tagesabschnitt diesen Startpunkt iiber-
lappt. Dies ldsst sich erreichen, ohne die Laufzeit wesentlich zu verschlechtern: Falls die
Aufteilung des Zyklus in Tagesabschnitte in einer Iteration der bindren Suche nicht ge-
klappt hat, versucht man, den ersten Abschnitt um eine Kante nach vorne zu verschieben
und passt auch die Enden der {ibrigen Abschnitte entsprechend an. Falls dadurch der letz-
te Abschnitt lang genug werden kann, um auch die ersten, nun frei gewordenen Kanten

3Getestet haben wir das mit der Implementierung ,.Blossom V*, die hier beschrieben wird: https://pub.ist.
ac.at/~vnk/papers/blossomb.pdf

40. Bundeswettbewerb Informatik 2. Runde

des Zyklus abzudecken, ist man fertig. Ansonsten probiert man, das noch so lange zu
wiederholen, bis der erste Abschnitt mindestens die urspriingliche Position des zweiten
Abschnitts erreicht hat.

Qualitat der Ergebnisse

Da wir — wie oben festgestellt — mit einer Heuristik keine optimalen Ergebnisse erreichen, kann
analysiert werden, wie gut die berechneten Ergebnisse tatsdchlich sind. Dazu wollen wir eine
untere Schranke verwenden, um abzuschitzen, welche Linge ein optimales Ergebnis immer
haben muss.

Zuerst kann man feststellen, dass die gefundene Linge des lingsten Tagesabschnittes maximal
fiinf mal so lang ist wie der ldngste Tagesabschnitt in der optimalen Losung. Wenn wir namlich
alle Tagesabschnitte aus der optimalen Losung zusammenfiigen, hétten wir eine Losung fiir
nur einen Tag, und diese konnen wir mit unserem Algorithmus optimal berechnen. Durch das
Aufteilen dieses Weges in fiinf Tagesabschnitte wird die Lange nur kleiner.

Wir konnen jedoch noch genauere Aussagen treffen: Wenn man eine optimale Losung hétte und
bei dieser alle Tagestouren zusammenfiigen wiirde, erhélt man einen Zyklus, der alle Kanten ab-
deckt und einige Kanten moglicherweise mehrfach abdeckt. Die Lénge der langsten Tagestour
ist zumindest ein Fiinftel der Gesamtlédnge dieses Zyklus. Der Eulerzyklus auf dem erweiterten
Graphen, den wir berechnen, ist ebenfalls ein solcher Zyklus auf dem Originalgraphen. Und
wir wissen, dass unser Eulerzyklus minimale Lénge hat (sofern wir den Blossom-Algorithmus
fiir das Matching verwenden). Daher hat auch der Zyklus aus der optimalen Losung mindestens
diese Linge. Teilen wir nun also die Lange unseres Zyklus durch fiinf, erhalten wir eine untere
Schranke fiir die Linge der ldngsten Tagestour in der optimalen Losung.

Die untere Schranke erlaubt es, unsere Losungen einzuordnen. Sollte beispielsweise unsere
Losung sehr nah an der unteren Schranke sein, wissen wir, dass hier sicher nur noch wenig
Optimierungsbedarf besteht. Aber Achtung: In die andere Richtung lidsst sich keine Aussage
treffen. Nur weil unsere Losung weit von der unteren Schranke entfernt ist, ldsst sich nicht
direkt sagen, dass wir noch viel optimieren konnen. Es konnte schlieBlich auch sein, dass die
untere Schranke weit von der optimalen Losung entfernt ist. Jedoch gilt immer: Ldsungen,
welche kiirzere Tagesstrecken als die angegebene untere Schranke berechnen, miissen falsch
sein.

1.2 Alternative Losung: ILP

Unser letzter vorgestellter Algorithmus benutzte eine Heuristik, um gute Ergebnisse zu finden.
Allerdings sind diese Ergebnisse natiirlich nicht in allen Fillen optimal. In diesem Abschnitt
wird kurz eine Moglichkeit vorgestellt, welche optimale Ergebnisse auf allen Instanzen liefert.
Allerdings: Da unser Problem NP-schwer ist, wird die folgende Moglichkeit also eine hohe
Laufzeit haben — sogar so hoch, dass mit dieser Methode die groen Beispiele des BWINF
nicht geldst werden konnen. Der folgende Losungsansatz komplementiert also die Heuristik
und kann beispielsweise auf kleinen Instanzen eingesetzt werden, um dort garantiert das beste
Ergebnis zu erreichen.

Der Losungsansatz ergibt sich mit einer Reduktion auf das ,Integer Linear Programming*-
Problem (kurz ILP genannt). Dieses Problem besteht aus eine Menge an ganzzahligen Varia-
blen, welche durch Ungleichungen eingeschrinkt werden. Eine Losung fiir das ILP-Problem

40. Bundeswettbewerb Informatik 2. Runde

besteht aus einer Belegung der Variablen, mit welcher alle Ungleichungen erfiillt sind. Wei-
terhin kann eine Kostenfunktion angegeben werden. Mit dieser ist es moglich, den Wert einer
Variablen zu minimieren. Eine ganzzahlige Losung, welche alle Ungleichungen erfiillt sowie
die Kosten minimiert, nennen wir optimal.

Beispielsweise konnte ein ILP-Problem wie folgt aussehen:

minimiere x
gegeben x+y >4

2x—3y >19
x,yEZ
Eine optimale Losung fiir dieses Problem wére nunx =7,y = —2.

ILP ist ebenfalls NP-schwer®. Daher gibt es ebenfalls keinen effizienten Algorithmus, um eine
optimale Losung fiir eine ILP-Instanz zu finden. Jedoch wird sehr intensiv an Algorithmen
geforscht, welche zwar theoretisch eine hohe Laufzeit haben, in der Praxis aber doch sehr viele
Instanzen schnell 16sen konnen. Solche Programme, wie z. B. GLPK?, werden ,,ILP-Solver
genannt.

Unsere Reduktion

Unser Ziel ist es, eine Instanz des Millabfuhr-Problems mit der Hilfe eines ILP-Solvers zu 16-
sen. Dazu miissen wir fiir eine gegebene Miillabfuhr-Instanz eine Instanz des ILP-Problems
konstruieren, dieses 16sen, und schlussendlich aus der Losung des ILP-Problems unseren Ta-
gesplan rekonstruieren. Diese Vorgehensweise heilit in der Informatik eine Reduktion: Wir
reduzieren das Miillabfuhr-Problem auf ILP.

Dies bedeutet, dass wir fiir einen Miillabfuhr-Eingabegraph G = (V, E) eine Menge an Unglei-
chungen definieren miissen, sodass diese einen Tagesplan ergeben. Zu diesem Zweck fiihrt
unsere Reduktion fiir alle Kanten in (i, j) € E fiinf Variablen x;;; bis x; ;5 ein. Jede dieser Varia-
blen soll spiter fiir die Anzahl stehen, wie oft die Kante an einem bestimmten Tag durchfahren
werden soll. Nun konnen wir mit Hilfe dieser Variablen unser Ziel beschreiben. Beispielswei-
se soll jede Kante an mindestens einem Tag durchfahren werden. Dies ergibt die folgenden
Ungleichungen:

5
Y xip>1 V(i,j)€E
=1

Natiirlich miissen noch deutlich mehr Ungleichungen hinzugefiigt werden. So muss natiirlich
sichergestellt werden, dass jede Tour an der Zentrale beginnt und endet. Ebenfalls diirfen natiir-
lich nur Kanten befahren werden, wenn wir diese auf dem Weg erreichen konnen. Aus Platz-
grilnden werden hier nicht alle Ungleichungen explizit beschrieben. Diese konnen jedoch zum
Beispiel in der Arbeit ,,On the balanced K-chinese Postmen Problems*0 nachgelesen werden.

Weiterhin kann mit diesem Ansatz eine Kostenfunktion definiert werden. Dazu wéhlen wir die
maximale Tagesldnge aus, welche minimiert werden soll. Insgesamt erhalten wir somit eine
Menge an Ungleichungen und eine Kostenfunktion. Fiir dieses Problem konnen wir nun einen
ILP-Solver befragen, welcher uns die Belegung der Variablen fiir eine optimale Losung ausgibt.

“Sonst konnten wir unser originales Problem nicht effizient auf ILP reduzieren.
Shttps://www.gnu.org/software/glpk/
®https://etd.lib.metu.edu.tr/upload/12618933/index.pdf, Seiten 13 — 14

40. Bundeswettbewerb Informatik 2. Runde

Da die Variablen die Informationen enthalten, an welchen Tag welche Stral3e befahren werden
soll, konnen wir nun sehr einfach einen Tagesplan erstellen’.

Untere Schranken

Da das ILP-Problem NP-schwer ist, kann unsere Losung auf den gro3en gegebenen Beispielen
(muellabfuhr5.txt bis muellabfuhr8.txt) in verniinftiger Zeit keine Losung finden. Trotzdem
kdnnen wir aus unserem Losungsansatz Infos liber die optimale Losung finden. Dazu benutzen
wir die folgende Beobachtung:

Wenn wir eine optimale Losung mit rationalen Zahlen fiir eine ILP-Instanz finden, dann
ist jede Losung mit ganzen Zahlen schlechter (oder gleich) zu der rationalen Losung.

Dieser Satz gilt, da alle Losungen mit nur ganzen Zahlen auch direkt Losungen mit rationalen
Zahlen sind. Diese Beobachtung ist sehr niitzlich, da es moglich ist, rationale Losungen fiir ILP-
Probleme effizient zu berechnen. In der Informatik nennt man diese Methode LP-Relaxation.

Mithilfe der LP-Relaxation kdnnen wir zwar keine optimale Lésung finden, jedoch erneut eine
untere Schranke fiir alle Losungen. Da jeder Tagesplan auch immer alle Ungleichungen er-
fiillen muss, kann ein Tagesplan nicht besser als die optimale (rationale) Losung zu unseren
Ungleichungen sein. Allerdings kann es durchaus sein, dass die untere Schranke ein deutlich
kleinerer Wert als die optimale Losung ist; insbesondere muss keine Losung mit Kosten gleich
der unteren Schranke existieren.

1.3 Einfachere Ansatze

Beide vorgestellten Ansétze bendtigen viel algorithmisches Vorwissen. Es sind auch andere
Ansitze denkbar.

Ein einfacherer heuristischer Ansatz wire zum Beispiel, vom Startpunkt aus fiinf Wege zu su-
chen, wobei immer an den bisher kiirzesten Weg die am schnellsten erreichbare, noch nicht
verwendete Kante angefiigt wird.

Eine Alternative fiir diesen Ansatz wire auch, die Wege nacheinander zu erstellen. Dazu miiss-
te man zuerst eine Maximalldnge festlegen, und dann nacheinander fiinf Pfade berechnen, die
moglichst viele zuvor noch nicht besuchte Kanten enthalten, und dabei diese Maximalldnge
nicht tiberschreiten. Bei der Auswahl der Kanten wird auch immer die am schnellsten erreich-
bare verwendet. Falls die Maximallidnge zu gering gewihlt ist, werden so nicht alle Kanten
abgedeckt. Falls man es aber doch schafft, alle Kanten abzudecken, hat man eine Losung mit
dieser Maximalldnge als langste Lange einer Tagestour. Man kann nun binidre Suche anwenden,
um eine kleine Maximallidnge zu finden, bei der noch eine Losung gefunden wird.

Genau genommen stimmt es bei diesem Ansatz nicht ganz, dass, wenn eine Losung fiir eine
Maximalldnge gefunden wird, auch fiir alle groBeren Maximalldngen eine Losung gefunden
werden wird. Daher kann es sich lohnen, in der bindren Suche die obere beziehungsweise
untere Grenze dem gepriiften Wert nur anzunéhern, statt sie direkt auf diesen Wert zu setzen.

"Wir suchen fiir jeden Tag einen Eulerkreis auf den fiir diesen Tag ausgewihlten Kanten, dieser wird unsere Tour.

10

40. Bundeswettbewerb Informatik 2. Runde

1.4 Ergebnisse auf den Beispieleingaben

Die folgende Tabelle fasst die Ergebnisse der verschiedenen Ansétze zusammen. In den Spalten
ist jeweils die Ldnge der lingsten Tagesstrecke, welche von der jeweiligen Losung berechnet
wurde, eingetragen.

Die betrachteten Ansitze sind die folgenden:
ILP Optimale Losung

H1 Zu Beginn beschriebene Heuristik, die den Blossom-Algorithmus zum Zuteilen von Kno-
tenpaaren verwendet.

H2 Wie H1, jedoch wurden die Knotenpaare mit einem Greedy-Algorithmus zugeteilt.
G1 Greedy-Algorithmus, der parallel fiinf Pfade erstellt.

G2 Greedy-Algorithmus, der mit bindrer Suche eine Maximalldnge bestimmt und fiir diese
nacheinander fiinf Pfade erstellt.

G3 Wie G2, aber mit modifizierter bindre Suche, die sich dem gepriiften Wert langsamer

anndhert.
Eingabedatei | ILP HI H2 Gl G2 G3 Untere
Schranke
muellabfuhr0 | 4 4 4 4 4 4 4
muellabfuhrl | 18 18 18 25 18 18 18
muellabfuhr2 | 9 10 10 14 10 10 9
muellabfuhr3 | 21 22 22 24 22 22 21
muellabfuhrd | 10 10 10 10 10 10 10
muellabfuhr5 | nfa 1468 1468 1479 1468 1468 1464
muellabfuhr6 | n/a 525291 558100 647578 631102 618121 477419
muellabfuhr? | n/fa 794793 799288 1236244 813009 813009 447294
muellabfuhr8 | n/fa 2719313 2719313 3355168 3123746 3122164 2666041

Im Folgenden werden die Ergebnispfade fiir einige Dateien aufgefiihrt. Aus Platzgriinden wer-
den die konkreten Wege jedoch nur fiir die Dateien bis muellabfuhr4.txt angegeben.

muellabfuhr0.txt

Diese Losung war bereits in der Aufgabenstellung vorgegeben.

Tag 1: 0 -> 8 -> 9 -> 8 -> 0, Gesamtlaenge: 4
Tag 2: 0 -> 4 -> 3 -> 2 -> 0, Gesamtlaenge: 4
Tag 3: 0 -> 8 -> 7 -> 6 -> 0, Gesamtlaenge: 4
Tag 4: 0 -> 8 -> 1 -> 2 -> 0, Gesamtlaenge: 4
Tag 6: 0 -> 6 -> 5 ->4 -> 0, Gesamtlaenge: 4

Maximale Laenge einer Tagestour: 4

11

40. Bundeswettbewerb Informatik 2. Runde

muellabfuhri.txt

Tag 1: 0 -> 6 -> 3 -> 5 -> 0, Gesamtlaenge: 11

Tag 2: 0 ->6 ->3 ->2 ->3 ->6 -> 0, Gesamtlaenge: 18

Tag 3: 0 ->6 ->7 ->5 ->4 ->3 ->6 -> 0, Gesamtlaenge: 18
Tag 4: 0 ->6 ->7 ->6 ->3 ->1 ->6 -> 0, Gesamtlaenge: 15
Tag 6: 0 -> 6 ->7 -> 4 -> 0, Gesamtlaenge: 16

Maximale Laenge einer Tagestour: 18

muellabfuhr2.txt

Tag 1: 0 ->5 ->11 ->8 ->12 ->8 ->7 ->9 ->5 -> 0, Gesamtlaenge: 9
Tag 2: 0 ->9 -> 12 ->1 ->7 ->11 -> 2 -> 10 -> 9 -> 0, Gesamtlaenge: 9
Tag 3: 0 ->6 >4 ->3 ->11 ->3 ->13 ->1 ->6 -> 0, Gesamtlaenge: 9
Tag 4: 0 ->9 >7 ->14 ->8 ->2 ->14 ->6 -> 9 -> 0, Gesamtlaenge: 9
Tag 5: 0 -> 9 -> 13 -> 14 -> 13 -> 4 -> 10 -> 14 -> 5 -> 0, Gesamtlaenge: 9

Maximale Laenge einer Tagestour: 9

muellabfuhr3.txt

Tag 1: 0 > 14 > 2 ->1 -> 12 -> 14 -> 11 -> 13 -> 10 -> 2 -> 11 -> 1 -> 10
->11 ->12 >0 -> 10 ->9 -> 0 -> 11 -> 6 -> 0, Gesamtlaenge: 21

Tag 2: 0 ->2 ->12 ->13 ->14 ->7 ->11 ->8 ->5 ->14 ->6 -> 13 -> 5
->2->6->10->7 >4 ->2 ->13 -> 1 -> 0, Gesamtlaenge: 21

Tag 3: 0 -> 13 >4 ->14 ->10 ->5 ->11 ->9 ->7 ->5 ->9 ->1 -> 14
>3 ->11->4->5->1->4->10 -> 3 -> 0, Gesamtlaenge: 21

Tag 4: 0 ->7 ->13 ->9 ->12 ->10 ->8 -> 13 ->3 -> 12 ->5 ->6 -> 12
->8 ->4->12 >7 ->1->6 ->3 ->4 -> 0, Gesamtlaenge: 21

Tag 5: 0 ->8 > 14 ->9 ->6 >4 ->9 ->2 ->7 ->3 ->9 ->8->7 ->6
->8->2->3->1->8 ->3->5 ->0, Gesamtlaenge: 21

Maximale Laenge einer Tagestour: 21

muellabfuhr4.txt

Tag 1: 0 ->9 ->8 ->9 ->0 ->1->2 ->1 -> 0, Gesamtlaenge: 8

Tag 2: 0 ->9 >8 ->7 ->6 ->5 >4 >3 ->2 ->1 ->0, Gesamtlaenge: 10
Tag 3: 0 -> 9 -> 8 -> 9 -> 0, Gesamtlaenge: 4

Tag 4: 0 -> 1 -> 0, Gesamtlaenge: 2

Tag 5: 0 -> 1 -> 0, Gesamtlaenge: 2

Maximale Laenge einer Tagestour: 10

12

40. Bundeswettbewerb Informatik 2. Runde

1.5 Bewertungskriterien

Die aufgabenspezifischen Bewertungskriterien werden hier erldutert.

1. Lésungsweg

ey
2

3)
“)

(&)

(6)

Problem addquat modelliert: Das StraBBennetz kann sinnvoll als Graph dargestellt wer-
den, dessen Kanten z. B. in einer Adjazenzliste gespeichert werden.

Laufzeit des Verfahrens in Ordnung: Alle vorgegebenen Testfille sollten in wenigen
Minuten bearbeitet werden konnen. Falls ein optimales Verfahren gewihlt wurde, reicht
es, wenn damit alle Testfille bis einschlieBlich muellabfuhr4.txt in angemessener Zeit
bearbeitet werden konnen. Solch ein Verfahren muss aber mit einer Heuristik ergénzt
werden, sodass auch auf grofleren Eingaben Ergebnisse geliefert werden.
Speicherbedarf in Ordnung: Das Programm sollte nicht unnotig viel (mehr als einige
GB) Speicher auf den gegebenen Beispielen brauchen.

Verfahren mit korrekten Ergebnissen: Die Ergebnisse miissen in dem Sinne korrekt sein,
dass alle Stra3en abgedeckt werden, nur an Kreuzungen oder Enden von Sackgassen ge-
wendet wird, hochstens 5 Tage benutzt werden, und alle Tagesstrecken an der Zentrale
beginnen und enden. (Hier wird nicht verlangt, dass die Lange der Tour minimal ist.) So-
fern Einsendungen kiirzere Tagesstrecken als die angegebene untere Schranke vorschla-
gen, ist eines dieser Kriterien sicher verletzt.

Verfahren mit guter Ergebnisqualitit: Die Lange der ldngsten Tagestour soll moglichst
kurz sein. Die Ergebnisse der vorgestellten Musterlosungen sind bereits sehr gut und
dhnliche Ergebnisse konnen Pluspunkte geben. Falls die Heuristik zu einfach ist und
dadurch die Ergebnisse deutlich schlechter als der zweite Greedy-Algorithmus (G2 in der
Tabelle) sind, gibt es Punktabzug; starke Abziige gibt es bei Ergebnissen, die schlechter
sind als G1.

Dabei darf aber durchaus eine Abwigung zwischen Laufzeit und Ergebnisqualitit getrof-
fen werden: Wenn die Laufzeit des Verfahrens besonders gering ist, diirfen die Ergebnisse
etwas schlechter sein.

Mehrere Losungsansditze: Da Heuristiken offensichtlich nicht zu garantiert optimalen
Ergebnissen fiihren, ist es sinnvoll, sich iiber unterschiedliche Losungsansitze zumindest
Gedanken zu machen. Wer wirklich mehrere und deutlich unterschiedliche Ansétze aus-
fiihrlich beschrieben oder sogar realisiert und miteinander verglichen hat, hat Pluspunkte
verdient.

2. Theoretische Analyse

ey

2)

Verfahren / Qualitdit insgesamt gut begriindet: Es muss erkannt werden, wenn das ver-
wendete Verfahren keine optimalen Ergebnisse liefert. Soweit es nicht offensichtlich ist,
sollte aulerdem darauf eingegangen werden, warum das Verfahren korrekte Ergebnisse
liefert, also alle Stra3en tatsdchlich abgedeckt werden.

Gute Uberlegungen zur Laufzeit des Verfahrens: Typischerweise sollte die asymptotische
Laufzeit des Verfahrens betrachtet werden. Es ist ideal, aber nicht notwendig, hierfiir die
O-Notation zu verwenden. Falls die Laufzeit im schlechtesten Fall exponentiell ist, sollte
dies erkannt werden. Praktische Laufzeitmessungen konnen die Angabe der asymptoti-
schen Laufzeit ersetzen. In Kombination — insbesondere, wenn die tatsdchliche Laufzeit

13

40. Bundeswettbewerb Informatik 2. Runde

auf den Beispielen stark von der Worst-Case-Laufzeit abweicht — kann ein Vergleich der
asymptotischen und tatsdchlichen Laufzeit auch Pluspunkte geben.

(3) NP-Schwere des Problems erkannt. Falls die NP-Schwere erkannt und korrekt begriindet
wird, etwa durch eine (informelle) Reduktion auf ein bekanntes NP-schweres Problem,
konnen Pluspunkte vergeben werden.

3. Dokumentation

(3) Vorgegebene Beispiele dokumentiert: Es muss die berechnete maximale Linge der Ta-
gesstrecken zu allen Beispielen vorhanden sein. Eine Losung fiir muellabfuhr0.txt ist
nicht notig, da diese von BWINF bereits angegeben wurde.

Fiir alle Beispiele bis muellabfuhr4.txt sollten auBerdem die konkreten Tagestouren
dokumentiert werden. Fiir die iibrigen Beispiele wird dies nicht gefordert.

(5) Ergebnisse nachvollziehbar dargestellt: Entweder die Léinge jeder Tagestour oder aber
die Liinge der ldngsten Tagestour muss explizit dokumentiert sein. Es ist nicht ausrei-
chend, nur die Touren selbst ohne Linge anzugeben.

Eine Tagestour selbst kann zum Beispiel als Liste von besuchten Knoten ausgegeben
werden.

14

