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Kryptographie ist die Wissenschaft der Verschliisselung von Informationen.
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Kryptographie ist die Wissenschaft der Verschliisselung von Informationen.

Diffie-Hellman Schliisselaustausch

Alice und Bob vereinbaren eine Primzahl p und eine Generatorzahl
g € {1,2,...p— 1}, am besten eine Primitivwurzel in Z,.
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Alice und Bob vereinbaren eine Primzahl p und eine Generatorzahl
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geheim eine Zahl a aus, Bob geheim eine Zahl b mit a,b € {1,2,...p — 1}.
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Kryptographie ist die Wissenschaft der Verschliisselung von Informationen.
Diffie-Hellman Schliisselaustausch

Alice und Bob vereinbaren eine Primzahl p und eine Generatorzahl

g € {1,2,...p— 1}, am besten eine Primitivwurzel in Z,. Alice wahlt
geheim eine Zahl a aus, Bob geheim eine Zahl b mit a,b € {1,2,...p — 1}.
Alice berechnet A = g? mod p, B = g? mod p. Dann tauschen beide A
und B aus. Das bedeutet, p, g, A, B sind 6ffentlich bekannt, a kennt nur
Alice, b nur Bob.

Beide kdnnen nun den gemeinsamen Schliissel K berechnen:

Alice: B? = (gP)? = g?? = K mod p
Bob: A = (g?)? = g% = K mod p
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Beispiel: p=13,g =2

Kryptographie Vertiefungskurs Mathematik 3/14



Beispiel: p=13,g =2
Alice: a =5,
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Beispiel: p=13,g =2
Alice: a=5, A=2%>=6mod 13
Bob: b =8,
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Beispiel: p=13,g =2
Alice: a=5, A=2%>=6mod 13
Bob: b=8, B =28=9mod13

3/14
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Beispiel: p=13,g =2
Alice: a =5, A=2°

Bob: h=8, B =28

mod 13

=6
=9 mod 13

Schliissel berechnen:

3/14
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Beispiel: p=13,g =2
Alice: a=5, A=25

= mod 13
Bob: b=8, B=28

=6
=9 mod 13

Schliissel berechnen:
Alice: B?=9"=3mod 13= K =3

3/14
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Beispiel: p=13,g =2
Alice: a=5, A=2%>=6mod 13
Bob: b=8, B =28=9mod13

Schliissel berechnen:

Alice: B?=9"=3mod 13= K =3
Bob: A =68 =3 mod 13= K =3
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Beispiel: p=13,g =2
Alice: a=5, A=2%>=6mod 13
Bob: b=8, B =28=9mod13

Schliissel berechnen:
Alice: B?=9"=3mod 13= K =3
Bob: A =68 =3 mod 13= K =3

Nebenrechnungen (mod 13):

2t=2 6! =

=4 6°=36=-3

2t = 6*=9=—4
68=16=3

ol=-4

?=16=3

9= -4
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Angriff auf Diffie-Hellman
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Angriff auf Diffie-Hellman

Eve versucht aus den offentlich bekannten Zahlen p, g, A, B den Schliissel
K zu berechnen.
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K zu berechnen. Eve weiB: 22 = 6 mod 13 und 2° = 9 mod 13.
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Angriff auf Diffie-Hellman

Eve versucht aus den offentlich bekannten Zahlen p, g, A, B den Schliissel
K zu berechnen. Eve weiB: 22 = 6 mod 13 und 2° = 9 mod 13.

Die Beschaffung des Exponenten a oder b heiBt
‘Berechnung des diskreten Logarithmus'.
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Angriff auf Diffie-Hellman

Eve versucht aus den offentlich bekannten Zahlen p, g, A, B den Schliissel
K zu berechnen. Eve weiB: 22 = 6 mod 13 und 22 = 9 mod 13.

Die Beschaffung des Exponenten a oder b heiBt
‘Berechnung des diskreten Logarithmus'. Bei klei-
nen Zahlen ist dies durch Ausprobieren mdglich.
g sollte Primitivwurzel sein, damit Angreifer
moglichst viel ausprobieren muss.

In der Praxis ist p eine Primzahl mit ca. 300 Stellen (eine Zahl groBer als
die Anzahl Atome im Weltall). Es ist kein effektives Verfahren zur
Berechnung des diskreten Logarithmus bekannt.
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Unterschied Logarithmus in Z, und Logarithmus in R
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Unterschied Logarithmus in Z, und Logarithmus in R

Beim Rechnen in R kann man den Wert des Exponenten abschatzen.
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Unterschied Logarithmus in Z, und Logarithmus in R

Beim Rechnen in R kann man den Wert des Exponenten abschatzen.

Beispiel: Gesucht ist a € R mit 27 = 12.
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Unterschied Logarithmus in Z, und Logarithmus in R
Beim Rechnen in R kann man den Wert des Exponenten abschatzen.

Beispiel: Gesucht ist a € R mit 22 = 12. Wegen 23 = 8 und 2* = 16 folgt:
3<a<4.
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Unterschied Logarithmus in Z, und Logarithmus in R
Beim Rechnen in R kann man den Wert des Exponenten abschatzen.

Beispiel: Gesucht ist a € R mit 22 = 12. Wegen 23 = 8 und 2* = 16 folgt:
3 < a < 4. Diese Folgerung ist im diskreten Fall nicht moglich.
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Unterschied Logarithmus in Z, und Logarithmus in R
Beim Rechnen in R kann man den Wert des Exponenten abschatzen.

Beispiel: Gesucht ist a € R mit 22 = 12. Wegen 23 = 8 und 2* = 16 folgt:
3 < a < 4. Diese Folgerung ist im diskreten Fall nicht moglich. Die
Potenzen der Generatorzahl springen wie zufallig in dem Restklassenring
herum.
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Man-in-the-middle- Angriff auf Diffie-Hellman
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Mallory kontrolliert das Netzwerk. Er gibt sich gegeniiber Alice als Bob aus
und gegeniiber Bob als Alice. Mit beiden vereinbart er getrennte Schliissel
gam und gbm_
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RSA-Verfahren
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und
m=(p—1)(g—1)
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und
m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit
l1<e<mundggT(e,m) =1
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und
m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit
1 < e < mund ggT(e, M) =1 und berechnet Entschliisselungsexponent d

mit d = = in Zg.
e
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und
m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit
1 < e < mund ggT(e, M) =1 und berechnet Entschliisselungsexponent d

1
—in fo-,.

mit d =

Dann ist der &ffentliche Schliissel (m, e) und der private Schliissel (m, d).
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und

m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit

1 < e < mund ggT(e, M) =1 und berechnet Entschliisselungsexponent d
1

mit d = = in Z.
€
Dann ist der &ffentliche Schliissel (m, e) und der private Schliissel (m, d).

Fiir die zu verschliisselnde Nachricht muss gelten: 0 < n < m.
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und

m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit

1 < e < mund ggT(e, M) =1 und berechnet Entschliisselungsexponent d
1

mit d = = in Z.
€
Dann ist der &ffentliche Schliissel (m, e) und der private Schliissel (m, d).

Fiir die zu verschliisselnde Nachricht muss gelten: 0 < n < m.

Bob verschliisselt n: N = n® mod m
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RSA-Verfahren

Alice wahlt zwei Primzahlen p und g und berechnet m = p- q und

m=(p—1)(g—1). Alice wahlt Verschliisselungsexponent e mit

1 < e < mund ggT(e, M) =1 und berechnet Entschliisselungsexponent d
1

mit d = = in Z.
€
Dann ist der &ffentliche Schliissel (m, e) und der private Schliissel (m, d).

Fiir die zu verschliisselnde Nachricht muss gelten: 0 < n < m.

Bob verschliisselt n: N = n® mod m
Alice entschliisselt N:  n= N mod m
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Beispiel: p=7,q =13
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e =11,
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.

ol | -

Berechnung von d: d = = in Zg
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.

ol | -

Berechnung von d: d==inZs dh.d-e=1mod m
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11,ggT(e,m) =1

| —

Berechnung von d: d = = in Zg, d.h. d-e =1 mod m, also
d-e—1=k-mfirein k € Z.
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.

1
Berechnung von d: d = = in Zg, d.h. d-e =1 mod m, also
d-e—1=k-mfirein k € Z.
Wir [6sen die diophantische Gleichung d - 11 — k-72 =1
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11,ggT(e,m) =1

Berechnung von d: d = i in Zg, d.h. d-e=1 mod M, also
d-e—lzk-n"vareiniGZ.

Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem
Erweiterten Euklidschen Algorithmus und erhalten d = 59.
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.
1
Berechnung von d: d = = in Zg, d.h. d-e =1 mod m, also
d-e—1=k-mfirein k € Z.
Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem

Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der 6ffentliche
Schliissel ist (91, 11), der private Schliissel ist (91,59).
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11,ggT(e,m) =1

Berechnung von d: d = i in Zg, d.h. d-e =1 mod m, also
d-e—lzk-n"?fUreiniEZ.

Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem
Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der 6ffentliche
Schliissel ist (91, 11), der private Schliissel ist (91,59).

Bob verschliisselt n = 10 :
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11,ggT(e,m) =1

Berechnung von d: d = i in Zg, d.h. d-e =1 mod m, also
d-e—lzk-n"?fUreiniEZ.

Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem
Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der 6ffentliche
Schliissel ist (91, 11), der private Schliissel ist (91,59).

Bob verschliisselt n =10: N = 10 mod 91 = 82
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1
Berechnung von d: d = = in Zg, d.h. d-e =1 mod m, also
d-e—1=k-mfirein k € Z.
Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem

Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der 6ffentliche
Schliissel ist (91, 11), der private Schliissel ist (91,59).
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Alice entschliisselt N = 82 :
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Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem
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Beispiel: p =7, =13 = m = 91 (RSA-Modul), m =72
e=11, ggT(e,m) = 1.
1
Berechnung von d: d = = in Zg, d.h. d-e =1 mod m, also
d-e—1=k-mfirein k € Z.
Wir [6sen die diophantische Gleichung d - 11 — k- 72 = 1 mit dem

Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der 6ffentliche
Schliissel ist (91, 11), der private Schliissel ist (91,59).

Bob verschliisselt n =10: N = 10! mod 91 = 82
Alice entschliisselt N =82: n=82% mod 91 = 10

Nebenrechnungen (mod 91) 82! = —9

10' =10 822=81=-10
10°=9 82*=9

10* = —10 828 =10

10 =100=9 821 =9

101'=9.9-10=-100=82 822 =_-10
82% = g232+16+8+2+1 — _10.9.-10--10- -9 =10
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Beweis, dass RSA-Entschliisselung funktioniert

Kryptographie Vertiefungskurs Mathematik 9/14



Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m.
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir

zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

Esist d =

ol | —

in Zs
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

Esist d =

ol | —

in Zg, also gilt: de — 1 = km.
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(q—1).

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: p|n

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: pjn=n=0mod p

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: pln = n=0mod p = (n®)? = 0 mod p.

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: pln = n=0mod p = (n®)? = 0 mod p.

Fall 2: ptn

o | —
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: pln = n=0mod p = (n®)? = 0 mod p.

Fall 2: ptn
- (ne)d — ped — pltk(p—1)(g-1)

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):
Fall 1: pln = n=0mod p = (n®)? = 0 mod p.

Fall 2: ptn
= (n®)9 = n°d = pltk(p—1)(g-1) — . (np—l)k(q—l)

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

Fall 1: pln = n=0mod p = (n®)? = 0 mod p.

Fall 2: ptn

= (ne)d = ned = n1+k(p—1)(q—1) =n- (np_l)k(q_l) = n mod p

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

Fall 1: p|n = n=0 mod p = (n®)¢ =0 mod p.

Fall 2: ptn

= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~!1 =1 mod p nach dem kleinen Satz von Fermat.
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

Fall 1: p|n = n=0 mod p = (n®)¢ =0 mod p.

Fall 2: ptn

= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~!1 =1 mod p nach dem kleinen Satz von Fermat.

Beweis von (2) analog.

@
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

Fall 1: p|n = n=0 mod p = (n®)¢ =0 mod p.

Fall 2: ptn

= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~!1 =1 mod p nach dem kleinen Satz von Fermat.

Beweis von (2) analog.

Aus (1) und (2) folgt: (n®)Y — n= ki - p = ko - q. mit geeigneten
ki, ko € Z.
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zunachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

| =

Esist d = = in Z, also gilt: de — 1 = kr. Daraus folgt:
de=1+km=1+k(p—1)(g—1). Beweis von (1):

Fall 1: p|n = n=0 mod p = (n®)¢ =0 mod p.

Fall 2: pfn

= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~!1 =1 mod p nach dem kleinen Satz von Fermat.

Beweis von (2) analog.

Aus (1) und (2) folgt: (n®)Y — n= ki - p = ko - q. mit geeigneten
ki, ko € Z. Da p, g Primzahlen, steckt g in k; und p in k> .
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zuniachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

T . .
Esist d = Zin Zg, also gilt: de —1 = km. Daraus folgt:
de=1+km=1+k(p—1)(q—1). Beweis von (1):
Fall 1: p/n = n =0 mod p = (n®)? =0 mod p.
Fall 2: pfn
= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~! =1 mod p nach dem kleinen Satz von Fermat.
Beweis von (2) analog.
Aus (1) und (2) folgt: (n®)Y — n= ki - p = ko - q. mit geeigneten
ki, ko € Z. Da p, g Primzahlen, steckt q in k; und p in ky . Also gilt:
() —n=ks-p-q.
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Beweis, dass RSA-Entschliisselung funktioniert

Wir zeigen n = N9 mod m, indem wir zeigen: (n€)? = n mod m. Wir
zeigen zuniachst:
(1):(n)=nmodp und (2):(n®)?=nmod g (2)

T . .
Esist d = Zin Zg, also gilt: de —1 = km. Daraus folgt:
de=1+km=1+k(p—1)(q—1). Beweis von (1):
Fall 1: p/n = n =0 mod p = (n®)? =0 mod p.
Fall 2: pfn
= (n®)9 = ned = pltklp=1)(a-1) = . (pP~1)k(9-1) = p mod p, da
nP~! =1 mod p nach dem kleinen Satz von Fermat.
Beweis von (2) analog.
Aus (1) und (2) folgt: (n®)Y — n= ki - p = ko - q. mit geeigneten
ki, ko € Z. Da p, g Primzahlen, steckt q in k; und p in ky . Also gilt:
(n®)? — n= k3 - p- q. Daraus folgt (n®)¢ = n mod m. O
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Angriff auf das RSA-Verfahren
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Angriff auf das RSA-Verfahren
Die Sicherheit des Verfahrens hangt davon ab, dass der Angreifer das

offentlich bekannte m nicht in die beiden Primfaktoren p und g zerlegen
kann.
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Angriff auf das RSA-Verfahren

Die Sicherheit des Verfahrens hangt davon ab, dass der Angreifer das
offentlich bekannte m nicht in die beiden Primfaktoren p und g zerlegen

kann. Sonst konnte er m berechnen und dann auch das Inverse zu dem
offentlichen e in Zg.
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Aufwand fiir die Faktorensuche
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(10%%9)
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(101%%) = 150 - In(10) ~ 150 - 2.3 = 345.4.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(10%59) = 150 - In(10) = 150 - 2.3 = 345.4. Also miissen wir

150 i
3955 ~ 3107 Kandidaten testen.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(10%59) = 150 - In(10) = 150 - 2.3 = 345.4. Also miissen wir

150 i
3955 ~ 3107 Kandidaten testen.

Annahme: 1 Computer schafft 10'2 Priifungen pro Sekunde (1 Million
Millionen).
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(10%59) = 150 - In(10) = 150 - 2.3 = 345.4. Also miissen wir

150 i
3955 ~ 3107 Kandidaten testen.

Annahme: 1 Computer schafft 10'2 Priifungen pro Sekunde (1 Million
Millionen). Das sind im Dauerbetrieb pro Jahr:
10%2 - 60 - 60 - 24 - 365 ~ 3 - 10'° Priifungen.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(101%0) = 150 - In(10) ~ 150 - 2.3 = 345.4. Also miissen wir
;2;5; ~ 3- 10" Kandidaten testen.

Annahme: 1 Computer schafft 102 Priifungen pro Sekunde (1 Million
Millionen). Das sind im Dauerbetrieb pro Jahr:
10'2-60 - 60 - 24 - 365 ~ 3 - 10'° Priifungen. Das bedeutet 3 1 10128

19_

Jahre fiir alle Priifungen (Alter des Weltalls: ca. 101° Jahre)
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. Inf’n)
Primzahlen unterhalb von n gibt.

In(101%0) = 150 - In(10) ~ 150 - 2.3 = 345.4. Also miissen wir

150 i
;25.5 ~ 3-10™7 Kandidaten testen.

Annahme: 1 Computer schafft 102 Priifungen pro Sekunde (1 Million
Millionen). Das sind im Dauerbetrieb pro Jahr:

1012 .60 - 60 - 24 - 365 ~ 3 - 10!° Priifungen. Das bedeutet 31 Y = 10128
Jahre fiir alle Priifungen (Alter des Weltalls: ca. 101° Jahre)

Wenn jeder Mensch einen Computer beisteuern wiirde und manche zwei
kiamen wir auf 10 Millarden = 10%° Computer.
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Aufwand fiir die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als v/103%0 = 10150 sind.
Nach der Abschatzung von Euler gilt fiir groBe n, dass es ca. (1)
Primzahlen unterhalb von n gibt.

In(10%59) = 150 - In(10) = 150 - 2.3 = 345.4. Also miissen wir

321?0 ~ 3-10™7 Kandidaten testen.

Annahme: 1 Computer schafft 102 Priifungen pro Sekunde (1 Million
Millionen). Das sind im Dauerbetrieb pro Jahr:

1012 .60 - 60 - 24 - 365 ~ 3 - 10!° Priifungen. Das bedeutet 31 Y = 10128
Jahre fiir alle Priifungen (Alter des Weltalls: ca. 101° Jahre)

Wenn jeder Mensch einen Computer beisteuern wiirde und manche zwei
kiamen wir auf 10 Millarden = 10%® Computer. Wenn jeder dieser
Computer 1000 mal schneller wire, wiirde es immer noch

10128-10-3 — 1015 Jahre dauern.
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Kryptographische Hashfunktionen
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Lange ab, den Hash der Eingabe.
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Lange ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Lange 256 ab.
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Lange ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Lange 256 ab.

Kryptographische Hashfunktionen sind kollisionsresistene
Einwegfunktionen.
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Lange ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Lange 256 ab.

Kryptographische Hashfunktionen sind kollisionsresistene
Einwegfunktionen. Kollisionsresistent bedeutet, es ist praktisch unmaglich,
zwei Eingaben zu finden, die denselben Hash ergeben.
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Lange ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Lange 256 ab.

Kryptographische Hashfunktionen sind kollisionsresistene
Einwegfunktionen. Kollisionsresistent bedeutet, es ist praktisch unmaglich,
zwei Eingaben zu finden, die denselben Hash ergeben. Einwegfunktion
bedeutet, es ist praktisch unméglich, aus dem Hashwert den Eingabewert
zu rekonstruieren.
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Digitale Signatur

Mit dem RSA-Verfahren und einer kryptographischen Hashfunktion kann
eine digitale Signatur erstellt werden.
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Digitale Signatur

Mit dem RSA-Verfahren und einer kryptographischen Hashfunktion kann
eine digitale Signatur erstellt werden.

N (hash (N)) wed, = Sig
L berechnek d Schickd o Bos A
A 2?
Sig = hadk (V) med ma N, sy Fallc ’?.-'.;{u_é ok, 15t Bob sichev,

dacs N v Alice stamnd .
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Durch eine digitale Signatur wird der Diffie-Hellman Schliisselaustausch
vor einem Man-in-the-middle-Angriff geschiitzt.
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Durch eine digitale Signatur wird der Diffie-Hellman Schliisselaustausch
vor einem Man-in-the-middle-Angriff geschiitzt.
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Siz(A) = hask(8) il LN St‘é,(ﬁ) = hash(B) ~ med me

=
Austonsd voe A, R, S5(A), sg(8)

1 < § e
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