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Kryptographie ist die Wissenschaft der Verschlüsselung von Informationen.

Diffie-Hellman Schlüsselaustausch

Alice und Bob vereinbaren eine Primzahl p und eine Generatorzahl
g ∈ {1, 2, ...p − 1}, am besten eine Primitivwurzel in Zp. Alice wählt
geheim eine Zahl a aus, Bob geheim eine Zahl b mit a, b ∈ {1, 2, ...p − 1}.
Alice berechnet A = ga mod p, B = gb mod p. Dann tauschen beide A
und B aus. Das bedeutet, p, g ,A,B sind öffentlich bekannt, a kennt nur
Alice, b nur Bob.

Beide können nun den gemeinsamen Schlüssel K berechnen:
Alice: Ba ≡ (gb)a ≡ gba ≡ K mod p
Bob: Ab ≡ (ga)b ≡ gab ≡ K mod p
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Beispiel: p = 13, g = 2

Alice: a = 5, A ≡ 25 ≡ 6 mod 13
Bob: b = 8, B ≡ 28 ≡ 9 mod 13

Schlüssel berechnen:
Alice: Ba ≡ 95 ≡ 3 mod 13 ⇒ K = 3
Bob: Ab ≡ 68 ≡ 3 mod 13 ⇒ K = 3

Nebenrechnungen (mod 13):
21 ≡ 2 61 ≡ 6
22 ≡ 4 62 ≡ 36 ≡ −3
24 ≡ 3 64 ≡ 9 ≡ −4

68 ≡ 16 ≡ 3
91 ≡ −4
92 ≡ 16 ≡ 3
94 ≡ −4
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Angriff auf Diffie-Hellman

Eve versucht aus den öffentlich bekannten Zahlen p, g ,A,B den Schlüssel
K zu berechnen. Eve weiß: 2a ≡ 6 mod 13 und 2b ≡ 9 mod 13.

Die Beschaffung des Exponenten a oder b heißt
‘Berechnung des diskreten Logarithmus’. Bei klei-
nen Zahlen ist dies durch Ausprobieren möglich.
g sollte Primitivwurzel sein, damit Angreifer
möglichst viel ausprobieren muss.

In der Praxis ist p eine Primzahl mit ca. 300 Stellen (eine Zahl größer als
die Anzahl Atome im Weltall). Es ist kein effektives Verfahren zur
Berechnung des diskreten Logarithmus bekannt.
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die Anzahl Atome im Weltall). Es ist kein effektives Verfahren zur
Berechnung des diskreten Logarithmus bekannt.

Kryptographie Vertiefungskurs Mathematik 4 / 14



Angriff auf Diffie-Hellman
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g sollte Primitivwurzel sein, damit Angreifer
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Unterschied Logarithmus in Zp und Logarithmus in R

Beim Rechnen in R kann man den Wert des Exponenten abschätzen.

Beispiel: Gesucht ist a ∈ R mit 2a = 12. Wegen 23 = 8 und 24 = 16 folgt:
3 < a < 4. Diese Folgerung ist im diskreten Fall nicht möglich. Die
Potenzen der Generatorzahl springen wie zufällig in dem Restklassenring
herum.
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Man-in-the-middle-Angriff auf Diffie-Hellman

Mallory kontrolliert das Netzwerk. Er gibt sich gegenüber Alice als Bob aus
und gegenüber Bob als Alice. Mit beiden vereinbart er getrennte Schlüssel
gam und gbm.
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RSA-Verfahren

Alice wählt zwei Primzahlen p und q und berechnet m = p · q und
m̃ = (p − 1)(q − 1). Alice wählt Verschlüsselungsexponent e mit
1 < e < m̃ und ggT(e, m̃) = 1 und berechnet Entschlüsselungsexponent d

mit d =
1

e
in Zm̃.

Dann ist der öffentliche Schlüssel (m, e) und der private Schlüssel (m, d).

Für die zu verschlüsselnde Nachricht muss gelten: 0 < n < m.

Bob verschlüsselt n : N = ne mod m
Alice entschlüsselt N : n = Nd mod m
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Beispiel: p = 7, q = 13

⇒ m = 91 (RSA-Modul), m̃ = 72
e = 11, ggT(e, m̃) = 1.

Berechnung von d : d =
1

e
in Zm̃, d.h. d · e ≡ 1 mod m̃, also

d · e − 1 = k · m̃ für ein k ∈ Z.
Wir lösen die diophantische Gleichung d · 11− k · 72 = 1 mit dem
Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der öffentliche
Schlüssel ist (91, 11), der private Schlüssel ist (91, 59).

Bob verschlüsselt n = 10 : N = 1011 mod 91 = 82
Alice entschlüsselt N = 82 : n = 8259 mod 91 = 10

Nebenrechnungen (mod 91) 821 ≡ −9
101 ≡ 10 822 ≡ 81 ≡ −10
102 ≡ 9 824 ≡ 9
104 ≡ −10 828 ≡ −10
108 ≡ 100 ≡ 9 8216 ≡ 9
1011 ≡ 9 · 9 · 10 ≡ −100 ≡ 82 8232 ≡ −10

8259 ≡ 8232+16+8+2+1 ≡ −10 · 9 · −10 · −10 · −9 ≡ 10

Kryptographie Vertiefungskurs Mathematik 8 / 14



Beispiel: p = 7, q = 13 ⇒ m = 91 (RSA-Modul), m̃ = 72

e = 11, ggT(e, m̃) = 1.

Berechnung von d : d =
1

e
in Zm̃, d.h. d · e ≡ 1 mod m̃, also

d · e − 1 = k · m̃ für ein k ∈ Z.
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Wir lösen die diophantische Gleichung d · 11− k · 72 = 1 mit dem
Erweiterten Euklidschen Algorithmus und erhalten d = 59. Der öffentliche
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Beweis, dass RSA-Entschlüsselung funktioniert

Wir zeigen n = Nd mod m, indem wir zeigen: (ne)d ≡ n mod m. Wir
zeigen zunächst:
(1) : (ne)d ≡ n mod p und (2) : (ne)d ≡ n mod q (2)

Es ist d =
1

e
in Zm̃, also gilt: de − 1 = km̃. Daraus folgt:

de = 1 + km̃ = 1 + k(p − 1)(q − 1). Beweis von (1):
Fall 1: p|n ⇒ n ≡ 0 mod p ⇒ (ne)d ≡ 0 mod p.
Fall 2: p ∤ n
⇒ (ne)d = ned = n1+k(p−1)(q−1) = n · (np−1)k(q−1) ≡ n mod p, da
np−1 ≡ 1 mod p nach dem kleinen Satz von Fermat.
Beweis von (2) analog.
Aus (1) und (2) folgt: (ne)d − n = k1 · p = k2 · q. mit geeigneten
k1, k2 ∈ Z. Da p, q Primzahlen, steckt q in k1 und p in k2 . Also gilt:
(ne)d − n = k3 · p · q. Daraus folgt (ne)d ≡ n mod m. □
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(1) : (ne)d ≡ n mod p und (2) : (ne)d ≡ n mod q (2)

Es ist d =
1

e
in Zm̃, also gilt: de − 1 = km̃. Daraus folgt:

de = 1 + km̃ = 1 + k(p − 1)(q − 1). Beweis von (1):
Fall 1: p|n ⇒ n ≡ 0 mod p ⇒ (ne)d ≡ 0 mod p.
Fall 2: p ∤ n

⇒ (ne)d = ned = n1+k(p−1)(q−1) = n · (np−1)k(q−1) ≡ n mod p, da
np−1 ≡ 1 mod p nach dem kleinen Satz von Fermat.
Beweis von (2) analog.
Aus (1) und (2) folgt: (ne)d − n = k1 · p = k2 · q. mit geeigneten
k1, k2 ∈ Z. Da p, q Primzahlen, steckt q in k1 und p in k2 . Also gilt:
(ne)d − n = k3 · p · q. Daraus folgt (ne)d ≡ n mod m. □

Kryptographie Vertiefungskurs Mathematik 9 / 14



Beweis, dass RSA-Entschlüsselung funktioniert

Wir zeigen n = Nd mod m, indem wir zeigen: (ne)d ≡ n mod m. Wir
zeigen zunächst:
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Angriff auf das RSA-Verfahren

Die Sicherheit des Verfahrens hängt davon ab, dass der Angreifer das
öffentlich bekannte m nicht in die beiden Primfaktoren p und q zerlegen
kann. Sonst könnte er m̃ berechnen und dann auch das Inverse zu dem
öffentlichen e in Zm̃.
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Aufwand für die Faktorensuche

Wenn wir versuchen, die Faktoren einer Primzahl mit 300 Stellen zu
finden, testen wir nur Primzahlen, die kleiner als

√
10300 = 10150 sind.

Nach der Abschätzung von Euler gilt für große n, dass es ca. n
ln(n)

Primzahlen unterhalb von n gibt.
ln(10150) = 150 · ln(10) ≈ 150 · 2.3 = 345.4. Also müssen wir
10150

345.5 ≈ 3 · 10147 Kandidaten testen.

Annahme: 1 Computer schafft 1012 Prüfungen pro Sekunde (1 Million
Millionen). Das sind im Dauerbetrieb pro Jahr:

1012 · 60 · 60 · 24 · 365 ≈ 3 · 1019 Prüfungen. Das bedeutet 3·10147
3·1019 = 10128

Jahre für alle Prüfungen (Alter des Weltalls: ca. 1010 Jahre).

Wenn jeder Mensch einen Computer beisteuern würde und manche zwei
kämen wir auf 10 Millarden = 1010 Computer. Wenn jeder dieser
Computer 1000 mal schneller wäre, würde es immer noch
10128−10−3 = 10115 Jahre dauern.
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Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Länge ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Länge 256 ab.

Kryptographische Hashfunktionen sind kollisionsresistene
Einwegfunktionen. Kollisionsresistent bedeutet, es ist praktisch unmöglich,
zwei Eingaben zu finden, die denselben Hash ergeben. Einwegfunktion
bedeutet, es ist praktisch unmöglich, aus dem Hashwert den Eingabewert
zu rekonstruieren.
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bedeutet, es ist praktisch unmöglich, aus dem Hashwert den Eingabewert
zu rekonstruieren.

Kryptographie Vertiefungskurs Mathematik 12 / 14



Kryptographische Hashfunktionen

Hashfunktionen bilden Eingabewerte (z.B. ein Text oder eine Datei) auf
einen Wert fester Länge ab, den Hash der Eingabe. Beispiel: SHA-256
bildet Eingaben auf eine Bitfolge der Länge 256 ab.

Kryptographische Hashfunktionen sind kollisionsresistene
Einwegfunktionen. Kollisionsresistent bedeutet, es ist praktisch unmöglich,
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zwei Eingaben zu finden, die denselben Hash ergeben. Einwegfunktion
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Digitale Signatur

Mit dem RSA-Verfahren und einer kryptographischen Hashfunktion kann
eine digitale Signatur erstellt werden.
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Durch eine digitale Signatur wird der Diffie-Hellman Schlüsselaustausch
vor einem Man-in-the-middle-Angriff geschützt.
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