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Kongruenz

Definition: Seien a, b € Z, m € N. Dann heiBt a kongruent zu b modulo m
geschrieben: a=bmod m, fallsa— bdurch m teilbar ist.
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Kongruenz

Definition: Seien a, b € Z, m € N. Dann heiBt a kongruent zu b modulo m

geschrieben: a=bmod m, fallsa— bdurch m teilbar ist.
Beispiel: m=5
0.S
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:
(1) = (2): a= b mod m heiBt nach Definition m|(a — b).

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 3/18



Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:
(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein
k € Z mit km=a— b.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:
(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein
k € Z mit km = a — b. Damit gilt: a = b+ km.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein
k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 < r < m.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 < r < m. Damit ist b=a — km
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 <r < m. Damitist b=a—km=qgm+r — km
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 < r < m. Damitist b=a—km=qgm+r—km=(q—k)m+r.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 <r < m. Damitist b=a—km=qm-+r—km=(q—k)m+r.
Also ldsst auch b beim Teilen durch m den Rest r.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 <r < m. Damitist b=a—km=qm-+r—km=(q—k)m+r.
Also ldsst auch b beim Teilen durch m den Rest r.

(3) = (1):
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3k€Z:a=b+ km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qm+ r
und 0 <r < m. Damitist b=a—km=qm-+r—km=(q—k)m+r.
Also ldsst auch b beim Teilen durch m den Rest r.

(3) = (1): Es gilt a= kim+ r und b = kom + r mit eindeutig
bestimmten ki, ko, r € Z und 0 < r < m.
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3ke€Z:a=b+km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qgm+r
und 0 <r < m. Damitist b=a—km=qgm-+r—km=(q—k)m+r.
Also lasst auch b beim Teilen durch m den Rest r.

(3) = (1): Es gilt a= kim+ r und b = kom + r mit eindeutig
bestimmten kyi, ko, r € Z und 0 < r < m. Also ist a— b
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3ke€Z:a=b+km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qgm+r
und 0 <r <m. Damitistb=a—km=qgm+r—km=(q—k)m+r.
Also lasst auch b beim Teilen durch m den Rest r.

(3) = (1): Es gilt a= kim+ r und b = kom + r mit eindeutig
bestimmten ki, ko, r € Z und 0 < r < m. Also ist a — b = (ky — ko)m
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Satz: Folgende Aussagen sind dquivalent:
(1)a=bmod m

(2)3ke€Z:a=b+km

(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:

(1) = (2): a= b mod m heiBt nach Definition m|(a — b). Also gibt ein

k € Z mit km = a — b. Damit gilt: a = b+ km.

(2) = (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes g € Z mit a=qgm+r
und 0 <r <m. Damitistb=a—km=qgm+r—km=(q—k)m+r.
Also lasst auch b beim Teilen durch m den Rest r.

(3) = (1): Es gilt a= kim+ r und b = kom + r mit eindeutig
bestimmten ki, ko, r € Z und 0 < r < m. Also ist a— b = (k; — kp)m und
damit gilt m|(a — b). O
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Doppelte Verwendung von ‘mod’
‘mod’ wird auch als modulo-Operator verwendet.

r=amod b bedeutet: r ist der Rest bei der Division von a und b.

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 4/18



Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r=amod b bedeutet: r ist der Rest bei der Division von a und b.
Beispiel:

3=7mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
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Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r=amod b bedeutet: r ist der Rest bei der Division von a und b.
Beispiel:

3=7mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
3=7mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)
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Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r=amod b bedeutet: r ist der Rest bei der Division von a und b.
Beispiel:

3=7mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
3=7mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)

Es gilt: a mod m=b mod m< a= b mod m
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)
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Rechenregeln fiir Kongruenzen
Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.

(1) a=amod m (Reflexivitat)
(2)a=bmod m=b=amod m (Symmetrie)
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—b mod m
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:

(4) —a=—b mod m
(5) a+c=b+dmod m
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-d mod m
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-d mod m

(7) a®> = b?> mod m, a3 = b mod m, ...
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-d mod m

(7) a®> = b?> mod m, a3 = b mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt ki, ko € Z mit
a=b+kmund c=d+ kom.
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-d mod m

(7) a®> = b?> mod m, a3 = b mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt ki, ko € Z mit
a=b+ kimund c = d+ kom. Dann ist ac = (b+ kim)(d + kam)
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2)a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=c mod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-d mod m

(7) a®> = b?> mod m, a3 = b mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt ki, ko € Z mit
a=b+ kimund c = d+ kom. Dann ist ac = (b+ kim)(d + kam) =
bd + bkym + kymd + kikym? =
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2) a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=cmod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-dmod m

(7) a®> = b?> mod m, a3 = b mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt ki, ko € Z mit
a=b+ kimund ¢ = d+ kom. Dann ist ac = (b+ kym)(d + kam) =
bd + bkom + kymd + kikom? = bd + (bka + kid + kikam) - m.
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Rechenregeln fiir Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Aquivalenzrelation auf Z.
(1) a=amod m (Reflexivitat)

(2) a=bmod m=b=amod m (Symmetrie)

(3 a=bmod mund b=cmod m=-a=cmod m (Transitivitit)

Satz: Wenn a = b mod m und ¢ = d mod m, dann gilt:
(4) —a=—bmod m

(5) a+c=b+dmod m

(6) a-c=b-dmod m

(7) a®> = b?> mod m, a3 = b mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt ki, ko € Z mit
a=b+ kimund ¢ = d+ kom. Dann ist ac = (b+ kym)(d + kam) =

bd + bkom + kymd + ki kom? = bd + (bka + kid + kikam) - m.

Das bedeutet: ac = bd mod m U
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Beispiel
m=7

73 4+ 155 =
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Beispiel
m=7

73+155=3+1=4mod 7
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Beispiel
m=7

73+155=3+1=4mod 7
73 -155 =
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Beispiel
m=7

73+155=3+1=4mod 7
73-155=3-1=3 mod 7
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Beispiel
m=7

73+155=3+1=4mod 7
73-155=3-1=3 mod 7
73155E
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Beispiel
m=7

734+ 155=3+1=4mod 7
73-155=3-1=3 mod 7
73155 = 3155 = 5 pod 7

Nebenrechnung (alles mod 7):

31=3

32=2

3% =4 =316 =364

38=2=332=3128

3155 = 3128416484241 —9.4.2.2.3=32.3=-3-3=-9=5
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2ln<
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.
3Ine
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.
3|n < die Quersumme ist durch 3 teilbar.
4n <
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n <
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n < die letzte Ziffer ist 5 oder 0.

6|n <
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n <
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.

5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8ln<
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.

5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8|n < die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.

9n<
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.

5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8|n < die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.

9|n < die Quersumme ist durch 9 teilbar.

10|n
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8|n < die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.
9|n < die Quersumme ist durch 9 teilbar.

10|n < die letzte Ziffer ist eine 0.

11jn &
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8|n < die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.
9|n < die Quersumme ist durch 9 teilbar.

10|n < die letzte Ziffer ist eine 0.

11|n < die alternierende Quersumme ist durch 11 teilbar.

12|n &
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Teilbarkeitsregeln
Satz: Sei n € N. Dann gilt:

2|n < die letzte Ziffer ist gerade.

3|n < die Quersumme ist durch 3 teilbar.

4|n < die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n < die letzte Ziffer ist 5 oder 0.

6|n < 2|n und 3|n.

7|n < die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.

8|n < die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.
9|n < die Quersumme ist durch 9 teilbar.

10|n < die letzte Ziffer ist eine 0.

11|n < die alternierende Quersumme ist durch 11 teilbar.

12|n < 3|n und 4|n.
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:

35881
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:

35881 — 3586
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:

35881 — 3586 — 346
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:

35881 — 3586 — 346 — 22
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:
35881 — 3586 — 346 — 22 = 7 kein Teiler von 35881
Teilbarkeit durch 11:

355971
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:
35881 — 3586 — 346 — 22 = 7 kein Teiler von 35881
Teilbarkeit durch 11:

355971:1-7+9-5+5-3
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:
35881 — 3586 — 346 — 22 = 7 kein Teiler von 35881
Teilbarkeit durch 11:

355971:1—-7+9—-545—-3=0= 11|355971
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = ajax_1...a2a1a¢ die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = ajax_1...a2a1a¢ die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = ajax_1...a2a1a¢ die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
=ap+ar+ax+..+ak
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = ajax_1...a2a1a¢ die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n=ag+ a1 - 10+ a> - 102 + ... + a - 10%
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n=ag+ a1 - 10+ a> - 102 + ... + a - 10%
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n=ag+ a1 - 10+ a> - 102 + ... + a - 10%
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3

Teilbarkeit durch 9 ebenso.

Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n=ag+ a1 - 10+ a> - 102 + ... + a - 10%
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3

Teilbarkeit durch 9 ebenso.

Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥
=ag—ay+a —az3+a,...
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥
= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥
= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7:
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥
=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥
= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer.
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥

=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥

= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ agp.
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥

=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥

= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ag. Also gilt auch: 2n = 20m + 2ag.
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥

=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥

= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n =21m — m+ 2ap.
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ag+a 10+ ax- 10>+ ... + a - 10

Teilbarkeit durch 3: n = ag + a1 - 10 + a - 102 + ... + a, - 10¥

=ap+ a1+ ax+ ... + ak = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a> - 102 + ... + a4 - 10¥

= a9 — a1 + ap — a3 + a4... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7.

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 9/18



Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ap+ay 10+ ap-10%+ ... + aj - 10¥

Teilbarkeit durch 3: n=ag + a1 - 10 + a5 - 102 + ... + a, - 10¥

=ap+ a1+ a2 + ... + ax = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a5 - 10% + ... + ay - 10%

=3y — a1 + a» — a3 + aa... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7. Insgesamt gilt:
7|n< 7|2n
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ap+ay 10+ ap-10%+ ... + aj - 10¥

Teilbarkeit durch 3: n=ag + a1 - 10 + a5 - 102 + ... + a, - 10¥

=ap+ a1+ a2 + ... + ax = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a5 - 10% + ... + ay - 10%

=3y — a1 + a» — a3 + aa... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7. Insgesamt gilt:
7|n < 7]2n < —m+2ap = 0 mod 7
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ap+ay 10+ ap-10%+ ... + aj - 10¥

Teilbarkeit durch 3: n=ag + a1 - 10 + a5 - 102 + ... + a, - 10¥

=ap+ a1+ a2 + ... + ax = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a5 - 10% + ... + ay - 10%

=3y — a1 + a» — a3 + aa... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7. Insgesamt gilt:
7|n< 7|12n < —m+2ap = 0 mod 7 < m—2a3y = 0 mod 7
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ap+ay 10+ ap-10%+ ... + aj - 10¥

Teilbarkeit durch 3: n=ag + a1 - 10 + a5 - 102 + ... + a, - 10¥

=ap+ a1+ a2 + ... + ax = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a5 - 10% + ... + ay - 10%

=3y — a1 + a» — a3 + aa... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7. Insgesamt gilt:
7|n < 7|2n < —m+2ay = 0 mod 7 < m—2ag = 0 mod 7 < 7|(m—2ap)
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Beweis der Teilbarkeitsregeln (fiir 3,9,11,7)

Es sei n = akak_1...axa1a9 die Dezimaldarstellung von n € N mit
a; € {0,1,...,9} fir 0 < i < k. Dann gilt
n=ap+ay 10+ ap-10%+ ... + aj - 10¥

Teilbarkeit durch 3: n=ag + a1 - 10 + a5 - 102 + ... + a, - 10¥

=ap+ a1+ a2 + ... + ax = Quersumme(n) mod 3
Teilbarkeit durch 9 ebenso.
Teilbarkeit durch 11: n = ag + a1 - 10 + a5 - 10% + ... + ay - 10%

=3y — a1 + a» — a3 + aa... = alternierende Quersumme(n) mod 11
Teilbarkeit durch 7: Es sei m die Zahl n ohne die letzte Ziffer. Dann gilt
n=10-m+ ap. Also gilt auch: 2n = 20m + 2ag. Und damit gilt:
2n = 21m — m+ 2ag. Daraus folgt: 2n = —m + 2ag mod 7. Insgesamt gilt:
7|n < 7|2n < —m+2ap = 0 mod 7 < m—2ag = 0 mod 7 < 7|(m—2ag)0
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse @ von a modulo m ist definiert durch:
a={be€Z:b=amod m}.
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse @ von a modulo m ist definiert durch:
a={be€Z:b=amod m}.

Andere Schreibweise: [a] statt a.
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse @ von a modulo m ist definiert durch:
a={be€Z:b=amod m}.

Andere Schreibweise: [a] statt a.
Beispiel: Die Restklassen modulo 5 sind

0=1{...,-10,-5,0,5,10,....}
1
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse @ von a modulo m ist definiert durch:
a={be€Z:b=amod m}.

Andere Schreibweise: [a] statt a.
Beispiel: Die Restklassen modulo 5 sind

0=1{...,-10,-5,0,5,10,....}
1={.,-9,-41611,..}
2
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m € N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse @ von a modulo m ist definiert durch:
a={be€Z:b=amod m}.

Andere Schreibweise: [a] statt a.

Beispiel: Die Restklassen modulo 5 sind

{..,—10,-5,0,5,10,...}
{..,—9,—4,1,6,11,....}

{.,—8,-3,2,7,12,..}
{-
{

—7 ~2,3,8,13....}
~1,4,9,14....}
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heiBt Restklassenring modulo m
geschrieben Z,.
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heiBt Restklassenring modulo m
geschrieben Z,.

Beispiel: Zs = {0,1,2,3,4}
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heiBt Restklassenring modulo m
geschrieben Z,.

Beispiel: Zs = {0,1,2,3,4}

Definition: Seien a, b € Z.
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heiBt Restklassenring modulo m
geschrieben Z,.

Beispiel: Zs = {0,1,2,3,4}

Definition: Seien a, b € Z.
a+b:=a+b
a-b:=a-b

L

Beispiel in Zs: 2+3=5 7+8=15=5
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heiBt Restklassenring modulo m
geschrieben Z,.

Beispiel: Zs = {0,1,2,3,4}

Defiﬂition: Seien a, b € Z.

Beispiel in Zs: 2+3=5 7+8=15=5

Es spielt keine Rolle, welcher Reprasentant der Restklasse fiir die
Berechnung genommen wird. Addition und Multiplikation sind
‘wohldefiniert’.
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Verkniipfungstabellen

Die Verkniipfungstabelle fiir Addition und Multiplikation in Zs

+]10 1 2 3 4 *0 1 2 3 4
0|0 1 2 3 4 0 0 00 0O
111 2 3 4 0 1 01 2 3 4
212 3 4 01 2 0 2 4 1 3
313 4 0 1 2 303 1 4 2
414 0 1 2 3 4 0 4 3 2 1
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nachsten Vielfachen von m?  Beispiel in Z7: —25 =
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3

Division in Zs :

NIl =
Il
X
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3

Division in Zs :

=xo1=2-x<

NIl
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3

Division in Zs :

=xo1=2.-xox=3

NIl
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3

Division in Zs :

=xo1=2.-xox=3

WII NI NI =
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Subtraktion: 3— b: =3+ —b. Danngilt: a—a=3a+—-a=a—a=0

Hilfsfrage fiir negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nichsten Vielfachen von m?  Beispiel in Z7: —25 =3

Division in Zs :

Il
x
(3
.
Il
N
X
(3
N
Il
wl

Il Nl NI =
Il
x
N
I
w]
x
x
Il
N
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Problem bei der Division in Zg4 :

*0 1 2 3
0O 0 0 0 O
1 01 2 3
2 0 2 0 2
3 0 3 21
D eT=2.x
2
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Problem bei der Division in Zg4 :

*0 1 2 3

0 00 0O

101 2 3

2 0 2 0 2

30 3 21

1 - = : :
§:x<:)1:2 x, es gibt kein x.
2 ~

—=x&2=2-X

2
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Problem bei der Division in Zg4 :

*0 1 2 3

0 0 0 0O

101 2 3

2 0 2 0 2

30 3 21

1 - = : :

§:x®1:2-x, es gibt kein x.

2 = = - - L . .
5 = x&2=2-x, x=1oder x =3, d.h. x ist nicht eindeutig.
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Existenz von Briichen in Z,,
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Existenz von Briichen in Z,,

a
b
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Existenz von Briichen in Z,,

=xXx<a=b-x

ol vl
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Existenz von Briichen in Z,,

a_ _
E:X@)a:b-x:b-x
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Existenz von Briichen in Z,,

=Xx<a=b-Xx=b-x< a=bx mod m

ol vl
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht.
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht. Wir miissen also die diophantische Gleichung bx + km = a |6sen.
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht. Wir miissen also die diophantische Gleichung bx + km = a |6sen.

Falls m Primzahl, dann ist ggT(m, b) = 1.
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht. Wir miissen also die diophantische Gleichung bx + km = a |6sen.

Falls m Primzahl, dann ist ggT(m, b) = 1. Dann hat die Gleichung fiir
jedes a eine Losung xg
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht. Wir miissen also die diophantische Gleichung bx + km = a |6sen.

Falls m Primzahl, dann ist ggT(m, b) = 1. Dann hat die Gleichung fiir
jedes a eine Losung xp und alle anderen Lésungen sind gegeben durch
xog+t-mte.
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Existenz von Briichen in Z,,

=xoa=b-Xx=b-xaa=bxmodme3keZ:km=a— bx

ol vl

In der letzten Gleichung sind a, b, m vorgegeben k ist unbekannt und x ist
gesucht. Wir miissen also die diophantische Gleichung bx + km = a |6sen.

Falls m Primzahl, dann ist ggT(m, b) = 1. Dann hat die Gleichung fiir
jedes a eine Losung xp und alle anderen Lésungen sind gegeben durch
xo+ t-m,t € Z. Dies sind die Elemente von Xxg.
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X,
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h.
definiert.

= X ist

ol vl
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h.
definiert.

= X ist

ol ol

Ll |

Merkregel: Wenn wir = in Z, suchen, dann l6sen wir die Gleichung

ax + py = 1. Es gilt dann: = =X.

o |
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h. = := X ist

ol ol

definiert.

1
Merkregel: Wenn wir = in Z, suchen, dann l6sen wir die Gleichung
a
1
ax + py = 1. Es gilt dann: = =X.
a
. . 1.
Beispiel: Bestimme ? in Z11.
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h. = := X ist

ol ol

definiert.

Merkregel: Wenn wir

Ll |

in Zp suchen, dann |6sen wir die Gleichung

1
ax + py = 1. Es gilt dann: = =X.
a

Beispiel: Bestimme = in Zi1. Wir I6sen die Gleichung 7x + 11y = 1.

~I =
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h. = := X ist

ol ol

definiert.

Merkregel: Wenn wir

Ll |

in Zp suchen, dann |6sen wir die Gleichung

1
ax + py = 1. Es gilt dann: = =X.
a

1
Beispiel: Bestimme - in Z11. Wir 16sen die Gleichung 7x 4+ 11y = 1. Eine

Losung ist x = =3,y = 2.
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Satz vom Dividieren: Sei p Primzahl, a€ Z,b € {1,...,p — 1}, dann

besitzt die Gleichung b-X = 3 in Z,, genau eine Lésung X, d.h.
definiert.

= X ist

ol ol

Ll |

Merkregel: Wenn wir = in Z, suchen, dann l6sen wir die Gleichung

ax + py = 1. Es gilt dann:

=X.

a

1
Beispiel: Bestimme - in Z11. Wir 16sen die Gleichung 7x 4+ 11y = 1. Eine

Losung ist x = —3,y = 2. Also gilt: = = -3 = 8.

~I =
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2% =
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=81=1, 4*
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs5: 2*=16=1, 3*=81=1, 4*=

Il
—~
|
[aary
~—
'S
I
—_

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Zp.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst
A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst
A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst
A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst
A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka=ja—ka=
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst
A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:
0=ja—ka=ja—ka=(j— k)a.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka=ja—ka=(j — k)a. Da j — k # 0 kénnen wir dividieren und

erhalten 3 = -2
j—k
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und

erhalten 3 = ﬁ' Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = ﬁ' Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme. Also gilt A = Z,.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = ﬁ' Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme. Also gilt A = Z,. Wir entfernen 0a aus A und Z,,.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2*=16=1, 3*=8l1=1 4*=(-1) =1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass aIIe Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = ﬁ' Damit ist a ein Vielfaches von p, im Widerspruch zur
Annahme. Also gilt A = Z,. Wir entfernen 0a aus A und Z,. Das Produkt
der restlichen Elemente muss gleich sein.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2* =16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = f:k' Damit ist a ein Vielfaches von p, im Widerspruch zur
Annahme. Also gilt A = Z,. Wir entfernen 0a aus A und Z,. Das Produkt
der restlichen Elemente muss gleich sein.
la-2a-...-(p—1a=1-2-...-p—1.
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2* =16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = f:k' Damit ist a ein Vielfaches von p, im Widerspruch zur
Annahme. Also gilt A = Z,. Wir entfernen 0a aus A und Z,. Das Produkt
der restlichen Elemente muss gleich sein.

la-2a-..-(p—1)a=1-2-...- p—1. Wir dividieren durch 1,2, ... und
erhalten: 2P 1 =1
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Kleiner Satz von Fermat:
Sei p Primzahl, a € N kein Vielfaches von p.
Dann gilt: 2?1 =1in Z, bzw. a»~1 =1 mod p.

Beispiel in Zs: 2* =16=1, 3*=81=1, 4*=(-1)*=1

Beweis: Setze A = {0a,1a,2a,...,(p — 1)a} C Z,. Wir zeigen zunichst

A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
Annahme: ja = ka fiir ein k > j. Dann gilt:

0=ja—ka —Ja — ka = (j — k)a. Da j — k # 0 kdnnen wir dividieren und
erhalten 3 = f:k' Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme. Also gilt A = Z,. Wir entfernen 0a aus A und Z,. Das Produkt
der restlichen Elemente muss gleich sein.

la-2a-..-(p—1)a=1-2-...- p—1. Wir dividieren durch 1,2, ... und
erhalten: 2P 1 =1 O
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Primitivwurzeln:

Definition: Ein Element g € Z,, heiBt Primitivwurzel, falls durch g~ alle
Elemente von Z,, auBer O dargestellt werden kdnnen.
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Primitivwurzeln:

Definition: Ein Element g € Z,, heiBt Primitivwurzel, falls durch g~ alle
Elemente von Z,, auBer O dargestellt werden kdnnen.

Beispiel:

2°=1mod 7 3°=1mod 7
2l=7> 31=3

22 =4 P =2

28 =1 33=6

24 =2 3*=4
=4 3¥=5

26 = =1
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Primitivwurzeln:

Definition: Ein Element g € Z,, heiBt Primitivwurzel, falls durch g~ alle
Elemente von Z,, auBer O dargestellt werden kdnnen.

Beispiel:

2°=1mod 7 3°=1mod 7
2l=7> 31=3

22 =4 P2=2

28 =1 33=6

24 =2 3*=4
=4 3¥=5

20 = =1

3 ist Primitivwurzel in Z7, 2 nicht.
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Primitivwurzeln:

Definition: Ein Element g € Z,, heiBt Primitivwurzel, falls durch g~ alle
Elemente von Z,, auBer O dargestellt werden kdnnen.

Beispiel:

2°=1mod 7 3°=1mod 7
2l=7> 31=3

22 =4 P =2

2 =1 33=6

24 =2 3*=4
=4 3¥=5
26=1 =1

3 ist Primitivwurzel in Z7, 2 nicht.

Tritt bei g¥ vor gP~! die Restklasse 1 auf, so wiederholen sich die
Restklassen. Es kann keine Primitivwurzel vorliegen.
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