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Kongruenz

Definition: Seien a, b ∈ Z,m ∈ N. Dann heißt a kongruent zu b modulo m
geschrieben: a ≡ b mod m, falls a− b durch m teilbar ist.

Beispiel: m = 5
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Satz: Folgende Aussagen sind äquivalent:
(1) a ≡ b mod m
(2) ∃k ∈ Z : a = b + km
(3) Beim Teilen durch m lassen a und b denselben Rest.

Beweis:
(1) ⇒ (2): a ≡ b mod m heißt nach Definition m|(a− b). Also gibt ein
k ∈ Z mit km = a− b. Damit gilt: a = b + km.
(2) ⇒ (3): Sei r der Rest beim Teilen von a durch m. Nach dem Satz vom
Teilen mit Rest gibt es ein eindeutig bestimmtes q ∈ Z mit a = qm + r
und 0 ≤ r < m. Damit ist b = a− km = qm + r − km = (q − k)m + r .
Also lässt auch b beim Teilen durch m den Rest r .
(3) ⇒ (1): Es gilt a = k1m + r und b = k2m + r mit eindeutig
bestimmten k1, k2, r ∈ Z und 0 ≤ r < m. Also ist a− b = (k1 − k2)m und
damit gilt m|(a− b). □
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Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r = a mod b bedeutet: r ist der Rest bei der Division von a und b.

Beispiel:

3 = 7 mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
3 ≡ 7 mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)

Es gilt: a mod m = b mod m ⇔ a ≡ b mod m

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 4 / 18



Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r = a mod b bedeutet: r ist der Rest bei der Division von a und b.

Beispiel:

3 = 7 mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)

3 ≡ 7 mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)

Es gilt: a mod m = b mod m ⇔ a ≡ b mod m

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 4 / 18



Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r = a mod b bedeutet: r ist der Rest bei der Division von a und b.

Beispiel:

3 = 7 mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
3 ≡ 7 mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)

Es gilt: a mod m = b mod m ⇔ a ≡ b mod m

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 4 / 18



Doppelte Verwendung von ‘mod’

‘mod’ wird auch als modulo-Operator verwendet.

r = a mod b bedeutet: r ist der Rest bei der Division von a und b.

Beispiel:

3 = 7 mod 2 bedeutet: 3 ist Rest von 7 : 2 (das ist falsch)
3 ≡ 7 mod 2 bedeutet: 3 ist kongruent zu 7 mod 2 (das ist wahr)

Es gilt: a mod m = b mod m ⇔ a ≡ b mod m

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 4 / 18



Rechenregeln für Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Äquivalenzrelation auf Z.

(1) a ≡ a mod m (Reflexivität)
(2) a ≡ b mod m ⇒ b ≡ a mod m (Symmetrie)
(3) a ≡ b mod m und b ≡ c mod m ⇒ a ≡ c mod m (Transitivität)

Satz: Wenn a ≡ b mod m und c ≡ d mod m, dann gilt:
(4) −a ≡ −b mod m
(5) a+ c ≡ b + d mod m
(6) a · c ≡ b · d mod m
(7) a2 ≡ b2 mod m, a3 ≡ b3 mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt k1, k2 ∈ Z mit
a = b + k1m und c = d + k2m. Dann ist ac = (b + k1m)(d + k2m) =
bd + bk2m + k1md + k1k2m

2 = bd + (bk2 + k1d + k1k2m) ·m.
Das bedeutet: ac ≡ bd mod m □
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(1) a ≡ a mod m (Reflexivität)
(2) a ≡ b mod m ⇒ b ≡ a mod m (Symmetrie)

(3) a ≡ b mod m und b ≡ c mod m ⇒ a ≡ c mod m (Transitivität)

Satz: Wenn a ≡ b mod m und c ≡ d mod m, dann gilt:
(4) −a ≡ −b mod m
(5) a+ c ≡ b + d mod m
(6) a · c ≡ b · d mod m
(7) a2 ≡ b2 mod m, a3 ≡ b3 mod m, ...

Beweis (nur 6): Aus der Voraussetzung folgt, es gibt k1, k2 ∈ Z mit
a = b + k1m und c = d + k2m. Dann ist ac = (b + k1m)(d + k2m) =
bd + bk2m + k1md + k1k2m

2 = bd + (bk2 + k1d + k1k2m) ·m.
Das bedeutet: ac ≡ bd mod m □

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 5 / 18



Rechenregeln für Kongruenzen

Satz: Die Relation ‘kongruent modulo m’ ist eine Äquivalenzrelation auf Z.
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Beispiel

m = 7

73 + 155 ≡

3 + 1 ≡ 4 mod 7
73 · 155 ≡ 3 · 1 ≡ 3 mod 7
73155 ≡ 3155 ≡ 5 mod 7

Nebenrechnung (alles mod 7):
31 ≡ 3
32 ≡ 2
34 ≡ 4 ≡ 316 ≡ 364

38 ≡ 2 ≡ 332 ≡ 3128

3155 = 3128+16+8+2+1 ≡ 2 · 4 · 2 · 2 · 3 ≡ 32 · 3 ≡ −3 · 3 ≡ −9 ≡ 5
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Teilbarkeitsregeln

Satz: Sei n ∈ N. Dann gilt:

2|n ⇔

die letzte Ziffer ist gerade.
3|n ⇔ die Quersumme ist durch 3 teilbar.
4|n ⇔ die Zahl aus den letzten beiden Ziffern ist durch 4 teilbar.
5|n ⇔ die letzte Ziffer ist 5 oder 0.
6|n ⇔ 2|n und 3|n.
7|n ⇔ die Zahl, die entsteht, wenn man das doppelte der letzten Ziffer von
der Zahl ohne die letzte Ziffer abzieht, ist durch 7 teilbar.
8|n ⇔ die Zahl aus den letzten drei Ziffern ist durch 8 teilbar.
9|n ⇔ die Quersumme ist durch 9 teilbar.
10|n ⇔ die letzte Ziffer ist eine 0.
11|n ⇔ die alternierende Quersumme ist durch 11 teilbar.
12|n ⇔ 3|n und 4|n.
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Beispiele Teilbarkeitsregeln

Teilbarkeit durch 7:

35881

→ 3586 → 346 → 22 ⇒ 7 kein Teiler von 35881

Teilbarkeit durch 11:

355971 : 1− 7 + 9− 5 + 5− 3 = 0 ⇒ 11|355971
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Beweis der Teilbarkeitsregeln (für 3,9,11,7)

Es sei n = akak−1...a2a1a0 die Dezimaldarstellung von n ∈ N mit
ai ∈ {0, 1, ..., 9} für 0 ≤ i ≤ k . Dann gilt
n = a0 + a1 · 10 + a2 · 102 + ...+ ak · 10k

Teilbarkeit durch 3: n ≡ a0 + a1 · 10 + a2 · 102 + ...+ ak · 10k
≡ a0 + a1 + a2 + ...+ ak ≡ Quersumme(n) mod 3

Teilbarkeit durch 9 ebenso.
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Restklassen

Betrachte alle Zahlen, die beim Teilen durch eine Zahl m ∈ N denselben
Rest lassen. Diese Zahlen werden zu einer Menge zusammengefasst, der
Restklasse.

Definition: Die Restklasse a von a modulo m ist definiert durch:
a = {b ∈ Z : b ≡ a mod m}.

Andere Schreibweise: [a] statt a.

Beispiel: Die Restklassen modulo 5 sind

0 = {...,−10,−5, 0, 5, 10, ....}
1 = {...,−9,−4, 1, 6, 11, ....}
2 = {...,−8,−3, 2, 7, 12, ....}
3 = {...,−7,−2, 3, 8, 13....}
4 = {...,−6,−1, 4, 9, 14....}
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Rechnen im Restklassenring

Die Menge aller Restklassen modulo m heißt Restklassenring modulo m
geschrieben Zm.

Beispiel: Z5 = {0, 1, 2, 3, 4}

Definition: Seien a, b ∈ Z.
a+ b := a+ b
a · b := a · b

Beispiel in Z5: 2 + 3 = 5 7 + 8 = 15 = 5
Es spielt keine Rolle, welcher Repräsentant der Restklasse für die
Berechnung genommen wird. Addition und Multiplikation sind
‘wohldefiniert’.
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Verknüpfungstabellen

Die Verknüpfungstabelle für Addition und Multiplikation in Z5

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

* 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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Subtraktion: a− b := a+−b. Dann gilt: a− a = a+−a = a− a = 0

Hilfsfrage für negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
nächsten Vielfachen von m? Beispiel in Z7: −25 = 3

Division in Z5 :

1

2
= x ⇔ 1 = 2 · x ⇔ x = 3

2

3
= x ⇔ 2 = 3 · x ⇔ x = 4
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nächsten Vielfachen von m? Beispiel in Z7: −25 = 3

Division in Z5 :

1

2
= x ⇔ 1 = 2 · x ⇔ x = 3

2

3
= x ⇔ 2 = 3 · x ⇔ x = 4

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 13 / 18



Subtraktion: a− b := a+−b. Dann gilt: a− a = a+−a = a− a = 0

Hilfsfrage für negative Restklassen: Wieviel fehlt vom Absolutbetrag zum
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Problem bei der Division in Z4 :

* 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

1

2
= x ⇔ 1 = 2 · x

, es gibt kein x.

2

2
= x ⇔ 2 = 2 · x , x = 1 oder x = 3, d.h. x ist nicht eindeutig.
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Existenz von Brüchen in Zm

a

b
= x ⇔ a = b · x = b · x ⇔ a ≡ bx mod m ⇔ ∃k ∈ Z : km = a− bx

In der letzten Gleichung sind a, b,m vorgegeben k ist unbekannt und x ist
gesucht. Wir müssen also die diophantische Gleichung bx + km = a lösen.

Falls m Primzahl, dann ist ggT(m, b) = 1. Dann hat die Gleichung für
jedes a eine Lösung x0 und alle anderen Lösungen sind gegeben durch
x0 + t ·m, t ∈ Z. Dies sind die Elemente von x0.
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a

b
= x ⇔ a = b · x = b · x

⇔ a ≡ bx mod m ⇔ ∃k ∈ Z : km = a− bx

In der letzten Gleichung sind a, b,m vorgegeben k ist unbekannt und x ist
gesucht. Wir müssen also die diophantische Gleichung bx + km = a lösen.
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x0 + t ·m, t ∈ Z. Dies sind die Elemente von x0.

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 15 / 18



Existenz von Brüchen in Zm
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x0 + t ·m, t ∈ Z. Dies sind die Elemente von x0.

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 15 / 18



Existenz von Brüchen in Zm
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a

b
= x ⇔ a = b · x = b · x ⇔ a ≡ bx mod m ⇔ ∃k ∈ Z : km = a− bx

In der letzten Gleichung sind a, b,m vorgegeben k ist unbekannt und x ist
gesucht. Wir müssen also die diophantische Gleichung bx + km = a lösen.

Falls m Primzahl, dann ist ggT(m, b) = 1. Dann hat die Gleichung für
jedes a eine Lösung x0
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Satz vom Dividieren: Sei p Primzahl, a ∈ Z, b ∈ {1, ..., p − 1}, dann
besitzt die Gleichung b · x = a in Zp genau eine Lösung x ,

d.h.
a

b
:= x ist

definiert.

Merkregel: Wenn wir
1

a
in Zp suchen, dann lösen wir die Gleichung

ax + py = 1. Es gilt dann:
1

a
= x .

Beispiel: Bestimme
1

7
in Z11. Wir lösen die Gleichung 7x + 11y = 1. Eine

Lösung ist x = −3, y = 2. Also gilt:
1

7
= −3 = 8.
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Kleiner Satz von Fermat:
Sei p Primzahl, a ∈ N kein Vielfaches von p.
Dann gilt: ap−1 = 1 in Zp bzw. ap−1 ≡ 1 mod p.

Beispiel in Z5: 2
4 ≡ 16 ≡ 1, 34 ≡ 81 ≡ 1, 44 ≡ (−1)4 ≡ 1

Beweis: Setze A = {0a, 1a, 2a, ..., (p − 1)a} ⊆ Zp. Wir zeigen zunächst
A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
Annahme: ja = ka für ein k > j . Dann gilt:
0 = ja− ka = ja− ka = (j − k)a. Da j − k ̸= 0 können wir dividieren und

erhalten a = 0
j−k

. Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme. Also gilt A = Zp. Wir entfernen 0a aus A und Zp. Das Produkt
der restlichen Elemente muss gleich sein.
1a · 2a · ... · (p − 1)a = 1 · 2 · ... · p − 1. Wir dividieren durch 1, 2, ... und
erhalten: ap−1 = 1 □
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A = Zp, indem wir zeigen, dass alle Elemente in A verschieden sind.
Annahme: ja = ka für ein k > j . Dann gilt:
0 = ja− ka = ja− ka = (j − k)a. Da j − k ̸= 0 können wir dividieren und

erhalten a = 0
j−k

. Damit ist a ein Vielfaches von p, im Widerspruch zur

Annahme. Also gilt A = Zp. Wir entfernen 0a aus A und Zp. Das Produkt
der restlichen Elemente muss gleich sein.
1a · 2a · ... · (p − 1)a = 1 · 2 · ... · p − 1. Wir dividieren durch 1, 2, ... und
erhalten: ap−1 = 1 □

Zahlentheorie - Kongruenz und Restklassen Vertiefungskurs Mathematik 17 / 18



Kleiner Satz von Fermat:
Sei p Primzahl, a ∈ N kein Vielfaches von p.
Dann gilt: ap−1 = 1 in Zp bzw. ap−1 ≡ 1 mod p.

Beispiel in Z5: 2
4 ≡ 16 ≡ 1, 34 ≡ 81 ≡ 1, 44 ≡ (−1)4 ≡ 1

Beweis: Setze A = {0a, 1a, 2a, ..., (p − 1)a} ⊆ Zp. Wir zeigen zunächst
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Primitivwurzeln:

Definition: Ein Element g ∈ Zm heißt Primitivwurzel, falls durch gk alle
Elemente von Zm außer 0 dargestellt werden können.

Beispiel:

20 ≡ 1 mod 7 30 ≡ 1 mod 7
21 ≡ 2 31 ≡ 3
22 ≡ 4 32 ≡ 2
23 ≡ 1 33 ≡ 6
24 ≡ 2 34 ≡ 4
25 ≡ 4 35 ≡ 5
26 ≡ 1 36 ≡ 1

3 ist Primitivwurzel in Z7, 2 nicht.

Tritt bei gk vor gp−1 die Restklasse 1 auf, so wiederholen sich die
Restklassen. Es kann keine Primitivwurzel vorliegen.
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Beispiel:

20 ≡ 1 mod 7 30 ≡ 1 mod 7
21 ≡ 2 31 ≡ 3
22 ≡ 4 32 ≡ 2
23 ≡ 1 33 ≡ 6
24 ≡ 2 34 ≡ 4
25 ≡ 4 35 ≡ 5
26 ≡ 1 36 ≡ 1

3 ist Primitivwurzel in Z7, 2 nicht.

Tritt bei gk vor gp−1 die Restklasse 1 auf, so wiederholen sich die
Restklassen. Es kann keine Primitivwurzel vorliegen.
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