
In der linearen Algebra möchte man lineare Gleichungsysteme mit mehreren Unbekannten lösen.

Beispiel 1:

Die Matrix-Form für dieses Gleichungssystems:

Die Zeilensicht: 

In welchem Punkt schneiden sich die beiden Geraden?

Die Spaltensicht:

Welche Linearkombination der Spalten ergibt b?

Linearkombination der Spalten

Beispiel 2:  

Die Zeilensicht: In welchem Punkt schneiden sich die drei Ebenen? 

Die Spaltensicht: Welche Linearkombination der 3 Spaltenvektoren ergibt b?

Elimination und Rücksubstitution

Können wir Ax = b für jedes b lösen?   Für diese Matrix A: ja

Wenn alle Spaltenvektoren in derselben Ebene liegen würden, hieße die Antwort: Nein. 

Zeilensicht und Spaltensicht

Die Matrixform für ein lineares Gleichungssystem ist Ax = b.
In der Zeilensicht fragen wir, in welchem Punkt sich drei Ebenen schneiden (bei 3 Gleichungen mit 3 
Unbekannten).
In der Spaltensicht fragen wir, welche Linearkombination der Spaltenvektoren die rechte Seite ergibt.

A1

Zeile 2 ersetzen wir durch die Linearkombination:
-3*Zeile1 + 1*Zeile2 + 0*Zeile3
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U = upper triangular matrix

Für 3 Gleichungen mit 3 Unbekannten gilt: Wenn wir bei der Elimination 3 pivots finden, dann können wir mit 
Rücksubstitution eine eindeutige Lösung finden.

Wenn an der pivot-Position eine 0 steht, müssen wir weiter unten schauen und ggf. die Zeilen tauschen. Wenn es dort 
auch nur Nullen gibt, finden wir keine 3 pivots und es gibt keine eindeutige Lösung (keine oder unendlich viele)

Die Elimination und ggf. das Tauschen von Zeilen wollen wir als eine Folge von Matrix -Operationen beschreiben.

Zeile * Spalte1.

Matrixmultiplikation

Matrix * Spalten2.

Jede Spalte von C ist eine Linearkombination der Spalten von A

Zeilen * Matrix3.

transponierte Spalte = Zeile

Spalte * Zeile4.

Einheitsmatrix

Eine quadratische Matrix mit 1 in der Diagonale und sonst 0 heißt Einheitsmatrix.

Quadratische Matrizen

Matrizen, bei denen  die Anzahl der Zeilen mit der Anzahl der Spalten übereinstimmen, nennt man man quadratische Matrizen.

Wenn Elimination für jede Spalte der Matrix ein pivot-Element liefert,  so können wir durch Rücksubstitution 
das Gleichungssystem eindeutig lösen. 

Die Multiplikation zweier Matrizen kann auf vier verschiedene Arten erfolgen, die alle zum gleichen Ergebnis führen.

A2

A3
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ohne Beweis: Assoziativität: wir können Umklammern

Für jede Matrix A gilt:  A * I = A  und  I * A = A

Zum Vertauschen von Zeilen einer Matrix A führen wir die entsprechende Operation mit der Einheitsmatrix durch und 
multiplizieren sie von links mit A (Zeilensicht).

     Zeile 2 und 3 sind vertauscht

Wenn wir die Elimination schrittweise durchführen, erkennen wir zwischendrin, ob Zeilenvertauschungen notwendig sind. 
Wir können die Zeilen auch ganz zu Beginn tauschen und dann die Elimination durchführen.

Eliminationsmatrizen

Die Eliminationsmatrix E21 sorgt dafür, dass an Position 21 eine Null entsteht.

Wir können die Elimination als eine Folge von Matrixmultiplikationen schreiben:

Falls wir bei der Elimination Zeilen vertauschen müssen, verwenden wir Permutationsmatrizen.

Die Eliminationsmatrix E32 sorgt dafür, dass an Position 32 eine Null entsteht.

Die Schritte des Gauss-Verfahrens als Matrizenoperationen

Permutationsmatrizen  

Matrix-Multiplikation ist nicht kommutativ, d.h. wir dürfen in der Regel die Reihenfolge nicht vertauschen.
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Beispiel: Wir wollen die Matrix, die die Operationen von        wieder rückgängig macht.

subtrahiere von Zeile 2 dreimal Zeile 1

addiere zu Zeile 2 dreimal Zeile 1

Beispiel für eine singuläre Matrix:

müsste sich als Linearkombination der Spalten von A darstellen lassen

     geht nicht.

Andere Begründung: A hat keine Inverse, weil man einen Vektor x      (d.h x             angeben kann, 

mit Ax = 0.

Eliminationsmatrizen, Permutationsmatrix, Upper triangular Matrix

Beispiel: 

U geht aus A hervor durch folgende Operationen.
Vertausche Zeile 2 und 31.
Addiere zu Zeile 2 das -2-fache von Zeile 12.
Addiere zu Zeile 3 das -1-fache von Zeile 13.

Wir können folgende Gleichung aufstellen:

Die Inverse einer quadratischen Matrix

Wenn es eine Matrix A   gibt mit               , dann heißt A invertierbar. Nicht -invertierbare

Matrizen nennt man auch singulär. Es gilt dann auch:

Matrixfaktorisierungen: A = LU  und PA = LU

Das Eliminationsverfahren können wir als Matrixprodukt darstellen

Die Inversen sind auch Eliminationsmatrizen und deren Produkt
ist eine untere Dreiecksmatrix L

U hat 0 unterhalb der Hauptdiagonalen (upper triangular matrix)
L hat 0 oberhalb der Hauptdiagonalen  (lower triangular matrix) 

Wenn bei der Elimination keine Zeile vertauscht werden muss, dann gilt:

Wenn A und B invertierbar sind, dann gilt: 

Beweis: 

A4
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Wir müssen zweimal eine Elimination nach Gauss machen (jetzt kommt Jordan hinzu) 
Gauss-Jordan löst zwei Gleichung gleichzeitig.

Gauss würde hier aufhören, aber Jordan macht von unten nach oben 
weiter, um links die Einheitsmatrix zu erzeugen.

Warum funktioniert das?

Gauss-Jordan Algorithmus zur Berechnung der inversen Matrix

Ein Problem vom Typ Ax = b

Spaltensicht:

Übung: Bestimme die Inverse zu A = 

Addiere zum 2-fachen der 2.Zeile die 1.Zeile

Subtrahiere von der 3.Zeile die 1.Zeile

Addiere zur 3.Zeile das 4-fache der 2.Zeile

Subtrahiere von der 2.Zeile die 3.Zeile

Subtrahiere von der 1.Zeile das 3-fache der 3.Zeile

  Subtrahiere von der 1.Zeile die 2.Zeile

Wenn wir einfache Eliminationsschritte verwenden (d.h. nur die Pivot-Zeile mit einem Faktor versehen), können wir die 
Elemente von L an Faktoren der Elimination ablesen.

Beispiel:

A5
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Wenn man zwei dieser Permutationsmatrix miteinander multipliziert, bleibt man in dieser Gruppe, wenn man 
invertiert bleibt man auch in dieser Gruppe.

Es gilt: 

  Subtrahiere von der 1.Zeile die 2.Zeile

Multipliziere die 1.Zeile mit 0.5

Die Transponierte einer Matrix

Wenn wir bei der Elimination in jeder Zeile ein pivot-Element finden, dann ist die Matrix invertierbar.

Die transponierte Matrix AT geht aus A hervor, indem die Zeilen von A die Spalten von AT werden (gilt auch für 
nicht-quadratische Matrizen).

Es gilt: 

Beweis:  a. ist unmittelbar einleuchtend

b. ist eine Linearkombination der Spalten von A. 

ist eine Linearkombination der Zeilen von AT

Transponieren von
ergibt also 

c.

Permutationsmatrizen

Eine Permutationsmatrix hat dieselben Zeilen wie I, nur in anderere Reihenfolge. Es gibt n! verschiedenen 
Reihenfolgen.

Es gilt:

A6

A7
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invertiert bleibt man auch in dieser Gruppe.

Es gilt: 

Falls gibt: 

Vektorräume und Unterräume

Die Definition von Vektorraum umfasst 8 Regeln, die erfüllt sein müssen. Wir begnügen uns hier mit der intuitiven 
Definition: ein Vektorraum muss alle Linearkombinationen seiner Elemente enthalten. 

Ein Unterraum ist ein Vektorraum in einem Vektorraum.

Beispiele: 

Der 1. Quadrant ist kein Vektorraum, da er nicht abgeschlossen für Linearkombinationen ist.

Jeder Unterraum muss den 0-Vektor enthalten

Symmetrische Matrizen

ist immer symmetrisch, denn

Welche Unterräume gibt es in 

Eine Gerade, die durch die 0 geht.

alle Linearkombinationen der Spalten bilden einen Unterraum in R3: den Spaltenraum von A,
                                                               C(A)  (column space)
                                                               Bild(A)

Bild(A) ist ein Unterraum von R4

Ax = b hat genau dann eine Lösung, wenn b in Bild(A).

In C(A) sind beispielsweise: 

In dem Beispiel kann man eine Spalte weglassen und bekommt trotzdem denselben Spaltenraum.

Der Kern(A) enthält alle Lösungen der Gleichung Ax = 0. 

Der Kern(A) ist ein Unterraum von R3.

Die Lösungen für bilden keinen Vektorraum, weil 0 keine Lösung ist.

Spalte 2 ist das doppelte von Spalte 1
Zeile 3 ist Zeile 1 + Zeile 2 
Spalten und Zeilen sind nicht unabhängig.

Wenn man Zeilenoperationen macht, ändert man das Bild von A, aber nicht den Kern von A.

Alle Lösungen für Ax = 0

A7

    

   dann heißt A symmetrisch

   Vektorraum aller 2-dimensionalen reellen Vektoren.
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r = Anzahl pivots = 2 = der Rang der Matrix freie Spalten: Variablen der freien Spalten kann man beliebig setzen, 
dann die anderen durch Rücksubstitution. Geschickte Wahl mit 0 und 1 
üblich. 

Matrix R : reduced row echelon form (rref)

Die rref-Matrix R hat Nullen über und unter den pivots und die pivots sind alle 1

Wenn man Zeilenoperationen macht, ändert man das Bild von A, aber nicht den Kern von A.

Auch durch Zeilenaustausch ist kein Pivot-Element für diese Spalte möglich. Das 
bedeutet: Diese Spalte ist eine Kombination der früheren Spalten.

Spalten ohne pivots = freie Spalten

U ist in Stufenform (echelon-form) Ax = 0 hat dieselben Lösungen wie Ux = 0.

freie Spalte 2           freie Spalte 4

Jede Linearkombination von x1 und x2 ist im Kern(A).

Die pivot-Zeilen und Spalten bilden die Einheitsmatrix

In den freien Spalten sehen wir die speziellen Lösungen mit 
umgekehrtem Vorzeichen.

Wenn wir die pivot und freien Spalten nebeneinander schreiben, haben wir für R die folgende Gestalt:

r = Rang der Matrix A = Anzahl pivots

Beispiel 1: Wir erkennen: Spalte 3 ist freie Spalte, d.h.  
eine Kombination der ersten beiden. 

Eine spezielle Lösung für Ax = 0 ist:

freie Spalte 3

Beispiel 2:

Rang(A) = 2
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Lösbarkeit: Bedingung für die rechte Seite:

Ax = b ist lösbar genau dann wenn b in dem Bild von A ist. 
oder:
Wenn eine Linearkombination der Zeilen die 0-Zeile ergibt, dann muss dieselbe Kombination der Komponenten von b 
Null ergeben. 

Algorithmus zur Lösung Ax = b

Eine partikulare Lösung: setze alle freien Variablen = 0. Dann löse Ax = b für die Pivot-Variablen.1.

Bestimme den Kern(A). Alle Lösungen sind dann: 2.

Spalte 2 ist freie Spalte d.h. ein Vielfaches der 1. Spalte. Eine 
spezielle Lösung für Ax = 0 ist:

Beispiel 3:

Rang(A) = 3

Spalten 3 und 5 sind freie Spalten, d.h. Spalte 3 ist Kombination von 
Spalte 1 und 2 und Spalte 5 ist Kombination von Spalte 1,2,4.

Alle Lösungen für Ax = b

Zeile 3 = Zeile 1 + Zeile 2 hat keine Lösung. 

Wir erkennen dies, wenn wir die Elimination mit der augmentierten Matrix durchführen.

Die Elimination für b = 

(Kern(A) ist oben bestimmt worden)

L ist kein Vektorraum, sondern ein "verschobener Vektorraum", eine 
verschobene Ebene im 4-dimensionalen Raum.

Die verschiedenen Fälle

A8

  keine Lösung
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A  m x n Matrix vom Rang r 

r = Anzahl pivots, d.h. r <= m und r <= n

Vektoren v1, v2, …. vn sind (linear) unabhängig, wenn es keine Linearkombination für die 0 gibt 
(außer die 0-Kombination). 

Der Spann der Vektoren v1, v2,…. vl besteht aus allen Linearkombinationen dieser Vektoren. Die Spalten einer Matrix 
A spannen das Bild von A auf

Eine Basis für ein Vektorraum ist eine Menge von unabhängigen Vektoren, die den gesamten Vektorraum aufspannen. 

Beispiele:
Die Spalten als Matrix gibt I. I hat nur 0 im Kern, also unabhängig. 
Die Vektoren sind eine Basis für R3

Die Vektoren sind keine Basis für, der Rang der Matrix ist 2, Der 
Spann ist ein 2D-Unterraum von R3. Die Vektoren sind keine Basis für 
diesen Unterraum.

Es gibt unendliche viele Basen von R3, aber alle enthalten 3 Vektoren. 

Gegeben ein Vektorraum. Dann hat jede Basis dieselbe Anzahl von Vektoren. Diese Zahl heißt Dimension des Vektorraums.

Lineare Unabhängigkeit, Spann, Basis, Dimension eines Vektorraums

Das bedeutet: kein Vektor kann als Linearkombination der anderen Vektoren dargestellt werden.

Eine Menge von Vektoren, die den Nullvektoren enthält, ist nie linear unabhängig.

Wenn wir die Vektoren als Spaltenvektoren einer Matrix ansehen, können wir formulieren:

Es gilt: 

A9
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