Lineare Algebra

Zeilensicht und Spaltensicht

In der linearen Algebra mdchte man lineare Gleichungsysteme mit mehreren Unbekannten ldsen.

Beispiel 1:

A%, -% = ©O

%, ¥2%, = 3

Die Matrix-Form fir dieses Gleichungssystems:
2 -1 o}
-4 2 %) |3
/[5‘ N = b

Die Zeilensicht:

In welchem Punkt schneiden sich die beiden Geraden?

Linearkombination der Spalten

Die Spaltensicht:

Welche Linearkombination der Spalten ergibt b?

Beispiel 2:
A%, — % 2 =0
—%, +2Ax, —%3z3 = -A

_szl"l¥5‘= \f

2
-1

Sk 2
-1 o %, (0]
2 -1 ¥*2 = -1
3 9\ %3 t
A x = b

Die Zeilensicht: In welchem Punkt schneiden sich die drei Ebenen?

Die Spaltensicht:

\
oo b= Y_'zl W% =

Kénnen wir Ax = b fiir jedes b ldsen?

Welche Linearkombination der 3 Spaltenvektoren ergibt b?
\
\ .

K— D’& L.Oivué}

Fir diese Matrix A: ja

Wenn alle Spaltenvektoren in derselben Ebene liegen wiirden, hiefe die Antwort: Nein.

2x,-%2=0
% vz =3
2
x‘
IR
'S
A
+ v 2
Sglbk4
[0}
o]
= A

Unbekannten).

Die Matrixform fiir ein lineares Gleichungssystem ist Ax = b.
In der Zeilensicht fragen wir, in welchem Punkt sich drei Ebenen schneiden (bei 3 Gleichungen mit 3

In der Spaltensicht fragen wir, welche Linearkombination der Spaltenvektoren die rechte Seite ergibt.

Al

P\vﬁ*

Elimination und Rucksubstitution N

>
K,y > Q:ﬁz %, = 2 (::)
Bx, + Bx, ¥ x5 =AZ 3
()

\‘*z. + %3

=2
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Zeile 2 ersetzen wir durch die Linearkombination:
-3*Zeilel + 1*Zeile2 + 0*Zeile3



z 2
@ -2| 6
o ®}w

(W} U = upper triangular matrix

oa®

Fiir 3 Gleichungen mit 3 Unbekannten gilt: Wenn wir bei der Elimination 3 pivots finden, dann kénnen wir mit
Rliicksubstitution eine eindeutige L&sung finden.

Wenn an der pivot-Position eine © steht, miissen wir weiter unten schauen und ggf. die Zeilen tauschen. Wenn es dort
auch nur Nullen gibt, finden wir keine 3 pivots und es gibt keine eindeutige LOsung (keine oder unendlich viele)

Die Elimination und ggf. das Tauschen von Zeilen wollen wir als eine Folge von Matrix -Operationen beschreiben.

Wenn Elimination fiir jede Spalte der Matrix ein pivot-Element liefert, so konnen wir durch Ricksubstitution
das Gleichungssystem eindeutig ldsen.
A2
2 (N
Matrixmultiplikation A
12 3 7 1 8 5
312 1 _ = 13
2 3 [3 0 3 _gl = 12 2 13 -8 Ca3
1o Lo /N o
2ty Rele Src
Ixl 24 i)
. ~
- S————
1. Zeile * Spalte 31 2 1
203 2
277 18 =5 Cpp 26D (D=-2
7 12 2 13 8
1 -1 A B | J
. - g
2. Matrix * Spalten 2 31 0 1 71 5 1 2 _
) : = ) - 2- 121+ 3 31 = (3
2 0 3 -2 122 § A -A
-1 11 -1 -1
Jede Spalte von C ist eine Linearkombination der Spalten von A T
T Y <
2 2 A2
ilen * ; |2 . 71 8 -5 1 ol - |z
3. Zeilen * Matrix S ‘ 1 2 ] = i ) l 2 4+ 3 3 ey
2 2 0 3 | - - .2
1 -1 Loo-1 1 z
T: transponierte Spalte = Zeile
4. Spalte * Zeile
P PR F 12 -]
[: 0 3 -2 = WG
27 (24 2 -1 IS 1ol Crl. = C |?1if,,3
3 - 2 6 0% -b Wl = I
) 62 4 -2 2 0-3 2 b=
-1 2 1 2 -1 -l -
Ca Ca

Die Multiplikation zweier Matrizen kann auf vier verschiedene Arten erfolgen, die alle zum gleichen Ergebnis fiihren.

Quadratische Matrizen

Matrizen, bei denen die Anzahl der Zeilen mit der Anzahl der Spalten libereinstimmen, nennt man man quadratische Matrizen.

Einheitsmatrix

Eine quadratische Matrix mit 1 in der Diagonale und sonst @ heift Einheitsmatrix.
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Fir jede Matrix A gilt: A * I =A und I * A=A

100 0 12 2
01 00 [ -l
00 1 0 3 4 34
00 01 n 2 02

Eliminationsmatrizen

Die Eliminationsmatrix Ez; sorgt dafiir, dass an Position 21 eine Null entsteht.

E@ ?mmw 22

Wir koénnen die Elimination als eine Folge von Matrixmultiplikationen schreiben:

E’Lz (E‘M A)

(E C A < U ohne Beweis: Assoziativitat: wir konnen Umklammern
32 Tn

Matrix-Multiplikation ist nicht kommutativ, d.h. wir diirfen in der Regel die Reihenfolge nicht vertauschen.
100 20 0
Lo ol*foo o =
100 n oo

Falls wir bei der Elimination Zeilen vertauschen missen, verwenden wir Permutationsmatrizen.

[ I U T S ]
.
"

o
o
=)

Permutationsmatrizen

Zum Vertauschen von Zeilen einer Matrix A fihren wir die entsprechende Operation mit der Einheitsmatrix durch und
multiplizieren sie von links mit A (Zeilensicht).

1 00 01 2 o 2
oo 11° 3 4 5 = 6 7 8
01 0 6 7 8§ 3 4 5

Zeile 2 und 3 sind vertauscht

Die Schritte des Gauss-Verfahrens als Matrizenoperationen

Wenn wir die Elimination schrittweise durchfiihren, erkennen wir zwischendrin, ob Zeilenvertauschungen notwendig sind.
Wir kénnen die Zeilen auch ganz zu Beginn tauschen und dann die Elimination durchfiihren.

E.P-A = U
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Eliminationsmatrizen, Permutationsmatrix, Upper triangular Matrix

Beispiel:
A- [

— b -
— b
-
s
"
|

U geht aus A hervor durch folgende Operationen.
1. Vertausche Zeile 2 und 3

2. Addiere zu Zeile 2 das -2-fache von Zeile 1
3. Addiere zu Zeile 3 das -1-fache von Zeile 1

Wir konnen folgende Gleichung aufstellen:

400 o3
O 40 ~1’|0 0 4 =_—u
-4 04 0 o4 40

?

\_/—«—J
E

E

Die Inverse einer quadratischen Matrix‘ ‘

-4 -1 -
Wenn es eine Matrix A gibt mit A A =L , dann heift A invertierbar. Nicht -invertierbare
Matrizen nennt man auch singuldr. Es gilt dann auch: A - P\’,] =

Beispiel: wir wollen die Matrix, die die Operationen von Ez4 wieder riickgdngig macht.

SRRt

subtrahiere von Zeile 2 dreimal Zeile 1

addiere zu Zeile 2 dreimal Zeile 1

Beispiel fiir eine singuldre Matrix:
13 !‘L — [d] geht nicht.
A = 2 6 . 4

4
[0} misste sich als Linearkombination der Spalten von A darstellen lassen

o
Andere Begriindung: A hat keine Inverse, weil man einen Vektor x % O (d.h x ¥ [O}) angeben kann,
. -5
mit Ax = O. *X = A

-A
AV\MO-\'WVIO.: /‘\-‘ exighedt B davm : Y2l= * = S:X = QP;AA\K = A'{ ('Nw = AO =0 é

-1 ) -4
Wenn A und B invertierbar sind, dann gilt: (A 6) = % A A
peveis: (A BY(BT-AT) = A (B BYAT = ACAT - T

Matrixfaktorisierungen: A =LU und PA = LU

Das Eliminationsverfahren kénnen wir als Matrixprodukt darstellen

Engy E,-P-A =U | (Bxr el L)

-A R = -~ -
(Eh . \:— ) i B C., VA = E21 Ei - Ea
~
l__r—«‘
T L Die Inversen sind auch Eliminationsmatrizen und deren Produkt
T ist eine untere Dreiecksmatrix L
_ U hat @ unterhalb der Hauptdiagonalen (upper triangular matrix)
? A - L u L hat @ oberhalb der Hauptdiagonalen (lower triangular matrix)

Wenn bei der Elimination keine Zeile vertauscht werden muss, dann gilt:
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A= Lu

Wenn wir einfache Eliminationsschritte verwenden (d.h. nur die Pivot-Zeile mit einem Faktor versehen), konnen wir die
Elemente von L an Faktoren der Elimination ablesen.

Beispiel:

A 01 14 00 14 00
0 17 040 ||-2 | - A = W
0-31 —4 04 0 o1

400 A5 A DO

A = 2 a0 0 4 © 40 WU
O O 4 A4 04 030

A 12 A O O

o ® 2 A= [onFX~Uk

o0 9 5| (0,-% 1) S & ©

w

2 L
2 | =u

20~
o
N
PR
~
'
Y
c
-
</

A5

Gauss-Jordan Algorithmus zur Berechnung der inversen Matrix

(3160 00 wee AT B AT
A A — —

Ein Problem vom Typ Ax = b

Wir missen zweimal eine Elimination nach Gauss machen (jetzt kommt Jordan hinzu)
Gauss-Jordan 16st zwei Gleichung gleichzeitig.

A D[40 /\'5{/\0 [40“-!--’5
2 3|04 ? © 1 | 2 A - e 1-21

AT /’ T AT

Gauss wiirde hier aufhoren, aber Jordan macht von unten nach oben
weiter, um links die Einheitsmatrix zu erzeugen.

Warum funktioniert das?

-A
E{A\I] — Y_T'\E] EA=T = ©~A

1
A
. R . 2 1 3
Ubung: Bestimme die Inverse zu A =
I 0 1
2 =3 0
2 1 3 1 0 0
-1 0 -1 0 1 0 (4' 2’ 0) Addiere zum 2-fachen der 2.Zeile die 1.Zeile
2 =3 0 0 01
21 il 00 Subtrahiere von der 3.Zeile die 1.Zeile
0 1 I 1 2 0
2 -3 0 0 0 1 (-1,0,4)
2 2 1 0 0 Addiere zur 3.Zeile das 4-fache der 2.Zeile
0 1 I 1 20
0 -4 -3 -1 0 1 (0,4, 0
21 3 1 0 0 Subtrahiere von der 2.Zeile die 3.Zeile
01 11 20 (0,1,-4)
oo 1 3 8§ 1
Subtrahiere von der 1.Zeile das 3-fache der 3.Zeile
213 1 0 0 (4,0,-3)
o1 0 -2 -6 -1

F 10 -8 -24 —_3] (4,-4,0)

Subtrahiere von der 1.Zeile die 2.Zeile
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2 1 0 -8 —24 -3 (4,-1,0) Subtrahiere von der 1.Zeile die 2.Zeile

Multipliziere die 1.Zeile mit @.5
2 0 0 -6 -18 2] (0.5,0,0)

A6

Wenn wir bei der Elimination in jeder Zeile ein pivot-Element finden, dann ist die Matrix invertierbar.

sa: (ABR) = 67 AT dem: (AB)(ELA) > A(BEHA" - T

N
X

Die Transponierte einer Matrix

Die transponierte Matrix AT geht aus A hervor, indem die Zeilen von A die Spalten von A" werden (gilt auch fiir
nicht-quadratische Matrizen).

A= |23 A (A7) = KT

lA A\.

e b

T

Es gilt: a. (A+ %BT = AT + B
T T, AT
p)

%
—a )T = (A‘\’

Beweis: a. ist unmittelbar einleuchtend

b. A % ist eine Linearkombination der Spalten von A. - -
(A<D <¥ A
T
XT A ist eine Linearkombination der Zeilen von AT
10 1 2 3 1 2 3
Rep: 21 o)« |of = |4 20 1]« |g | | = [3 4 7]
I 1 7 1 0 1 w V- A'T'
T u
A X Ax > A
v
% U A T T

Transponieren von A \3 = A’ﬂ A"z - ergibt also

q
gl
~

L)

g
\
N
</

AT
. AA’ A=T = (A:A-/-\{r= A;‘-(A )

Permutationsmatrizen

Eine Permutationsmatrix hat dieselben Zeilen wie I, nur in anderere Reihenfolge. Es gibt n! verschiedenen
Reihenfolgen.

l C\7O° [ouo 0
o o o1 oo | \ O
i) sl (Bhe] focad lBat] Leve

Wenn man zwei dieser Permutationsmatrix miteinander multipliziert, bleibt man in dieser Gruppe, wenn man
invertiert bleibt man auch in dieser Gruppe.

st P o= P du. PTP

A

I

A7
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Es gilt: P = 'PT dh: ’PTP = I

A7

Symmetrische Matrizen

T
Falls gibt: /b\ = A\ dann heift A symmetrisch

- T Y T
- T _ T _
A‘ . P\ ist immer symmetrisch, denn (}\ : A) - A A A A\

3 | 4 TV B
KN [_\ 3 ]] = 11113 11
1 7 11 17

A AT A AT

A

Vektorraume und Unterrdume

Die Definition von Vektorraum umfasst 8 Regeln, die erfiillt sein miissen. Wir begniigen uns hier mit der intuitiven
Definition: ein Vektorraum muss alle Linearkombinationen seiner Elemente enthalten.

Ein Unterraum ist ein Vektorraum in einem Vektorraum.

2 01 .
2 ~ el lor raue
Beispiele: |K Vektorraum aller 2-dimensionalen reellen Vektoren. 'R 0\’“\0 [ 4 Wéve ‘('“ V thl

Der 1. Quadrant ist kein Vektorraum, da er nicht abgeschlossen fiir Linearkombinationen ist.

2
Welche Unterriume gibt es in J& 2 4. IR

2. Eine Gerade, die durch die @ geht.

3, {o}

Jeder Unterraum muss den ©-Vektor enthalten

A = - I% alle Linearkombinationen der Spalten bilden einen Unterraum in R3: den Spaltenraum von A,
- C(A) (column space)
41 Bild(A)
2

Bild(A) ist ein Unterraum von R4

>

[}
£ b —

IS

[¥3

Ax = b hat genau dann eine L&sung, wenn b in Bild(A).

In C(A) sind beispielsweise: |, = Y%] (" = Y_’;&)
!
L - L‘.\} (- [_il)

In dem Beispiel kann man eine Spalte weglassen und bekommt trotzdem denselben Spaltenraum.

Der Kern(A) enthdlt alle Losungen der Gleichung Ax = @.

[%1 € Kem(X) | ['}A € kem(n) , < [Aﬂ € Kem (A

Der Kern(A) ist ein Unterraum von R3. VvV, W& K“"‘(A> == A‘V"w) = Av+r Avw =0
/\:. D\s\-n‘\aw\—ivjt—s«/\'z
A lCVB = C A\I =D

2
Die Losungen fiir AX = [z} bilden keinen Vektorraum, weil @ keine LOsung ist.

Alle Losungen fir Ax =0

Spalte 2 ist das doppelte von Spalte 1
Zeile 3 ist Zeile 1 + Zeile 2
Spalten und Zeilen sind nicht unabhangig.

(]
NS

[}
3
= NN
>
o

=

Wenn man Zeilenoperationen macht, &ndert man das Bild von A, aber nicht den Kern von A.
- ivet
¥y D2 2 2 L
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13 6 % 10]
Wenn man Zeilenoperationen macht, andert man das Bild von A, aber nicht den Kern von A.

, (b]vc't

ek bd

= Auch durch Zeilenaustausch ist kein Pivot-Element fiir diese Spalte moglich. Das
bedeutet: Diese Spalte ist eine Kombination der friiheren Spalten.

K~
o)

= o 0 @ 4 U ist in Stufenform (echelon-form) Ax = © hat dieselben Losungen wie Ux = ©.

L-—i\—' Spalten ohne pivots = freie Spalten

freie Spalten: Variablen der freien Spalten kann man beliebig setzen,

ix
Geschickte Wahl mit @ und 1

r = Anzahl pivots = 2 = der g
dann die anderen durch Riicksubstitution.
tiblich.
-2 2
A o
XA = (v} Yz = 'z-\ Jede Linearkombination von x1 und x2 ist im Kern(A).
o

freie Spalte 2 freie Spalte 4

Matrix R : reduced row echelon form (rref)

Die rref-Matrix R hat Nullen Uber und unter den pivots und die pivots sind alle 1

(R
FN Y

u

N\ ¢

Die pivot-Zeilen und Spalten bilden die Einheitsmatrix

TN

F
W

In den freien Spalten sehen wir die speziellen LOsungen mit
umgekehrtem Vorzeichen.

ANGQN

Wenn wir die pivot und freien Spalten nebeneinander schreiben, haben wir fiir R die folgende Gestalt:

v wvr
I I l S r = Rang der Matrix A = Anzahl pivots

R = oo

Beispiel 1: Wir erkennen: Spalte 3 ist freie Spalte, d.h.
T E eine Kombination der ersten beiden.

3
0o 1 9 Eine spezielle Losung fir Ax = @ ist:

P VYCQ(AX “lo 0 o "o o -
s 10 00 0 X = -1 ’& -F
A & freie Spalte 3

—A
{ C E:l ) c 6‘&% Rang(A) = 2

>

[}
b b b =
o

~
g
3
—
>
N4
\

Beispiel 2:
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2 0 Spalte 2 ist freie Spalte d.h. ein Vielfaches der 1. Spalte. Eine
A4 = - . .. . .
S 4 (A) 0 P spezielle Losung fir Ax = @ ist:

13 0 0

Kew (A) = ic{é] ) ¢ eR i

Beispiel 3:

/\=l‘

L=
-1 e
X

Rang(A) = 3

o0 -~ N

tJ
|
|
n

Spalten 3 und 5 sind freie Spalten, d.h. Spalte 3 ist Kombination von

A = 2 -1 8 1 =1 WG-G (A\ = 0 1 == ] Spalte 1 und 2 und Spalte 5 ist Kombination von Spalte 1,2,4.

1 0 3 I -1 o 0 B0 =

3001 7 2 0 00 0 0 0 — -4

% -A

z o

= 4 =
Xa o X2 2
0 1

Kern (A) = %, + A=, ) c,de R)S

Alle Losungen fiir Ax=b

I 2 2 A1
A~ 5 6 8 Zeile 3 = Zeile 1 + Zeile 2 = A\( = ?s hat keine L&sung.
3

Wir erkennen dies, wenn wir die Elimination mit der augmentierten Matrix durchfiihren.

1 2 2 2 1 12 2 2 1 1 2 2 21 2 2 2 1
(_A\o]= 246 8 5| —>foo2 4 3|7 7jo02437]0o04 3
36 8 10 7 16 8 10 7 00 2 4 4 00 0 0@l 4— keine Lésung

4

Die Elimination fiir b = g
P22 2 i 122 2 1 122 2 1 122 2 1
S.N"]T' 2 a6 5 sl—> oo 2 4 3l—]0o0 24 3]—>|00 24 3
36 8 10 6 3 6 8 10 6 000 2 4 3 0000 0

Losbarkeit: Bedingung fir die rechte Seite:
Ax = b ist 16sbar genau dann wenn b in dem Bild von A ist.
oder:

Wenn eine Linearkombination der Zeilen die ©-Zeile ergibt, dann muss dieselbe Kombination der Komponenten von b
Null ergeben.

Algorithmus zur Losung Ax = b
1. Eine partikulare Losung: setze alle freien Variablen = ©. Dann 1ldse Ax = b fir die Pivot-Variablen.

oF

| X, =%,=0 o 2%;=3 .=7 Yo = 3/2

0 0 4 3 X,‘J-ZY.‘:" = ¥, =-2
o 0 0 0 0
| &
g =
; ¢ V2
§ve. 5
2. Bestimme den Kern(A). Alle Lésungen sind dann: Xr + \<CVVI(,A)
t !
AXV S T ><’6 KCW\U’K\ Nu daw : /\(xe{-x\ = AKF* N = -
-2 -2
n- = 7.C'>7- + C. ,:) N aA- _2_ (Kern(A) ist oben bestimmt worden)
o o A

L ist kein Vektorraum, sondern ein "verschobener Vektorraum", eine
verschobene Ebene im 4-dimensionalen Raum.

Die verschiedenen Falle

Lineare Algebra Seite 9



—n—
A m x n Matrix vom Rang r A 1 [ 1
Z wm
i

r = Anzahl pivots, d.h. r<=mund r <= n

"['<M' ré<n

T=n<=m F=n<m N T m4dn e
Q-1 R-[5]" R-[zFl  m=[o5

- v
A \—6%2((:"' 0.70‘“ A <0 L;D"“-"l_sch O ode op Loﬁu-.k,__.
Ax=lo oty

Lineare Unabhéngigkeit, Spann, Basis, Dimension eines Vektorraums

Vektoren v1, v2, ... vn sind (linear) unabhangig, wenn es keine Linearkombination fiir die © gibt
(auBer die @-Kombination).
C'\V*\*CIVL"’"-' A Chvn = O =72 C'\-:Cv.=" = Cn*—'o

Das bedeutet: kein Vektor kann als Linearkombination der anderen Vektoren dargestellt werden.
Eine Menge von Vektoren, die den Nullvektoren enthdlt, ist nie linear unabhangig.

Wenn wir die Vektoren als Spaltenvektoren einer Matrix ansehen, koénnen wir formulieren:
A = Y\" N, - V:} Kem (A) = 3\01 &7 Vi,V Ve L car rralohbnGic £ VM&U% =

Der Spann der Vektoren v1, v2,... vl besteht aus allen Linearkombinationen dieser Vektoren. Die Spalten einer Matrix
A spannen das Bild von A auf

Eine B: fiir ein Vektorraum ist eine Menge von unabhdngigen Vektoren, die den gesamten Vektorraum aufspannen.
! ° o . . . . R
L R’b . (-0] L\ LO Die Spalten als Matrix gibt I. I hat nur @ im Kern, also unabhangig.
Beispiele: . el, o . ) Die Vektoren sind eine Basis fiir R3
] 2 3 Die Vektoren sind keine Basis fir, der Rang der Matrix ist 2, Der
l] 2z 3 Spann ist ein 2D-Unterraum von R3. Die Vektoren sind keine Basis fiir
z2.1» sda L3 diesen Unterraum.
; ) kevb = ‘ | 3
Es gilt: A = M Vo Ve wmvevh evoov (= Y, V2,V sinl Base vou R

Es gibt unendliche viele Basen von R3, aber alle enthalten 3 Vektoren.

Gegeben ein Vektorraum. Dann hat jede Basis dieselbe Anzahl von Vektoren. Diese Zahl heiRft Dimension des Vektorraums.

! -A 1

1 2 3 1 4 { o -1 o
A=|1 121 3|m MR B € Kean(AD

12 3 1 41| 0 o -a

= vank(AB =2 Basis = i(_“\-l,le ode E—l ,(.E]

=
Anaal G""‘ Vanable,

\

dawer (%“&(A\\ =Y = 2 , M(Kan(/&\\ = v-v
An e\ e\'vo\s

AS
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