

A2021

Es sei (a_n) eine Zahlenfolge.

- Geben Sie die Definition dafür an, dass $\lim_{n \rightarrow \infty} a_n = a$ gilt.
- Eine Folge heißt Nullfolge, wenn sie gegen Null konvergiert. Beweisen Sie durch Anwendung der Definition aus a., dass die Folge (b_n) mit $b_n = \frac{n}{n^2 + 1}$ eine Nullfolge ist.
- Beweisen Sie ohne die Verwendung von Grenzwertsätzen: Sind (a_n) und (b_n) Nullfolgen, dann ist auch die Summenfolge $(a_n + b_n)$ eine Nullfolge.
- Geben Sie Beispieldfolgen a_n, b_n an, die keine Nullfolgen sind, und deren Summenfolge eine Nullfolge bildet.

a) $\lim_{n \rightarrow \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0: |a - a_n| < \varepsilon$

b) Es ist zu zeigen:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0: \left| \frac{n}{n^2 + 1} - 0 \right| < \varepsilon \quad (*)$$

Aufzurunden

$$\frac{n}{n^2 + 1} < \varepsilon \Leftrightarrow \frac{n}{n^2} < \varepsilon \Leftrightarrow \frac{1}{n} < \varepsilon$$

Setze $n_0 = \lceil \frac{1}{\varepsilon} \rceil$. Dann gilt Aussage (*).

c) Sei $\varepsilon > 0$. Dann gilt es nach Voraussetzung n_0, n_1 mit:

$$|a_n| < \frac{\varepsilon}{2} \text{ für } n > n_1 \text{ und } |b_n| < \frac{\varepsilon}{2} \text{ für } n > n_2$$

Setze $n_0 := \max(n_1, n_2)$. Dann gilt.

$$|a_n + b_n| \leq |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \text{ Also ist } (a_n + b_n) \text{ Nullfolge.}$$

Dreiecksungleichung

d) $(a_n) = 1, \quad (b_n) = -1$

(a_n) und (b_n) sind keine Nullfolgen. Aber $(a_n + b_n)$ ist Nullfolge.