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a. Gegeben Sie in jeder Teilaufgabe ein Beispiel an fiir Folgen, die die angegebenen
Aussagen erfiillen:

al. (ay) ist konvergent und (by,) ist divergent und (a, = b,,) ist divergent

a2. (a,) ist konvergent und (b,,) ist divergent und (a,, = b,,) ist konvergent

a3. (a,) ist divergent und (b,) ist divergent und (a, * b,,) ist divergent

ad. (a,) ist divergent und (b,) ist divergent und (a,, * b, ) ist konvergent

). Es seinen (a,, ), onvergente reelle Folgen mit ¢ = lim a,, und b = lim b,,. Was
b. E n)s (b)) ki gent lle Folg t | " 14 lim b,. W
-0 =00

ann man iiber die Folge (a, * b, ) aussagen? me Beweis!

ki I lie Folg t gen? (Ohne B !

c. Es seinen (ay,) eine gegen a konvergente Folge. Beweisen Sie durch Induktion beziiglich
m, dass fiir alle m € N gilt: Die Folgen (al') konvergiert gegen a™. Hinweis: Verwenden
Sie die Aussage aus Teil b.
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