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Mit (ay,) wird eine Folge bezeichnet, die die Folgenglieder a,,, (n € N) besitzt.

a. Es sei (a,) eine reelle Folge und a eine reelle Zahl. Geben Sie die Definition der Kon-

vergenz von (a,) geben a an.

b. Beweisen Sie, dass lim o = 0. Weisen Sie dazu nach, dass die Definition der Konver-
N300

genz erfiillt ist.

c. Sei (bn) eine Folge mit |b,| < — fiir n € N. Zeigen Sie, dass (b,) geben 0 konvergiert.

Weisen Sie dazu nach, dass die Konvergenzdefinition erfiillt ist.

d. Sei (¢n) eine Folge mit |¢,| < 3 fiir n € N. Sie weiter die Folge (d,,) definiert durch

dy = =, dny1 = ¢n-dy fiir n € N. Beweisen Sie, dass die Folgen (d,,) gegen Null konvergiert.

Hinweis: Sie diirfen in jedem Aufgabenteil die Resultate der davorliegenden Aufgabenteile
verwenden, auch wenn Sie diese nicht bewiesen haben.
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