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Gegeben sei eine reelle Folge (a,,) und eine reelle Zahl a.
a. Geben Sie die Definition dafiir an, dass die Folge (a,) gegen a konvergiert, also
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b.Weise Sie nach, dass lim — = 0 gilt.
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c. Es seien (ay), (b,) Folgen und es gelte a, < b, < a, + — fiir n € N. Beweisen Sie: Ist
n

(a,) konvergent gegen a, dann konvergiert auch (b,,) gegen a.
d. Bestimmen Sie durch Anwendung der Sétze iiber konvergente Folgen unter Zuhilfenah-
me von Teil ¢) den Grenzwert der Folge (b,,) mit
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