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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet.
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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet. Wir schreiben a,, fiir das n-te Folgenglied und (a,) fiir die Folge.
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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet. Wir schreiben a,, fiir das n-te Folgenglied und (a,) fiir die Folge.

Beispiel: (ap) = 1,1,2,3,5,8,13, ... ist eine Folge mit a; = 3.
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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet. Wir schreiben a,, fiir das n-te Folgenglied und (a,) fiir die Folge.

Beispiel: (ap) = 1,1,2,3,5,8,13, ... ist eine Folge mit a; = 3.

Wir kdnnen eine Folge auch ansehen als eine Funktion f : N — R mit
f(n) = an.
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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet. Wir schreiben a,, fiir das n-te Folgenglied und (a,) fiir die Folge.

Beispiel: (ap) = 1,1,2,3,5,8,13, ... ist eine Folge mit a; = 3.

Wir kdnnen eine Folge auch ansehen als eine Funktion f : N — R mit
f(n) = an.

Wir kdnnen uns eine Folge vorstellen als eine Folge von Punkten auf der
Zahlengeraden.
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Definition Folge: Eine (reelle) Folge ist eine Abbildung a: N — R, also
eine Vorschrift, die jeder natiirlichen Zahl n das n-te Folgenglied a(n) € R
zuordnet. Wir schreiben a,, fiir das n-te Folgenglied und (a,) fiir die Folge.

Beispiel: (ap) = 1,1,2,3,5,8,13, ... ist eine Folge mit a; = 3.

Wir kdnnen eine Folge auch ansehen als eine Funktion f : N — R mit
f(n) = an.

Wir kdnnen uns eine Folge vorstellen als eine Folge von Punkten auf der
Zahlengeraden.

Manchmal ldsst man eine Folge beim Index 0 beginnen.
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Eine Folge kann explizit durch eine Formel fiir das n-te Folgenglied
gegeben sein.
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Eine Folge kann explizit durch eine Formel fiir das n-te Folgenglied
gegeben sein.

a,=n?*+1 beschreibt die Folge
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Eine Folge kann explizit durch eine Formel fiir das n-te Folgenglied
gegeben sein.

a,=n?*+1 beschreibt die Folge
dy = 2,32 = 5,33 =10...
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Eine Folge kann explizit durch eine Formel fiir das n-te Folgenglied
gegeben sein.

a,=n?*+1 beschreibt die Folge
a) = 2,32 = 5,33 =10...

Eine Folge kann rekursiv durch Riickgriff auf frilhere Folgenglieder gegeben
sein.

1, n=1,n=2
a, =
an—1+ap—2 n>2
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Eine Folge kann explizit durch eine Formel fiir das n-te Folgenglied
gegeben sein.

a,=n?*+1 beschreibt die Folge
a) = 2,32 = 5,33 =10...

Eine Folge kann rekursiv durch Riickgriff auf frilhere Folgenglieder gegeben
sein.

1, n=1,n=2
a, =
an—1+ap—2 n>2

3121,32:1,33:2734:3...
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Zwei Folgen sind dann gleich, wenn sie mit dem gleichen Index starten und
die entsprechenden Folgenglieder alle gleich sind. Dieselbe Folge kann uns
auf unterschiedliche Arten gegeben sein.
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Zwei Folgen sind dann gleich, wenn sie mit dem gleichen Index starten und
die entsprechenden Folgenglieder alle gleich sind. Dieselbe Folge kann uns
auf unterschiedliche Arten gegeben sein.

apn=2"flrn>0
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Zwei Folgen sind dann gleich, wenn sie mit dem gleichen Index starten und
die entsprechenden Folgenglieder alle gleich sind. Dieselbe Folge kann uns
auf unterschiedliche Arten gegeben sein.

apn=2"flrn>0

b, — 1, n=20
2-bp_1 n>0
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Zwei Folgen sind dann gleich, wenn sie mit dem gleichen Index starten und
die entsprechenden Folgenglieder alle gleich sind. Dieselbe Folge kann uns
auf unterschiedliche Arten gegeben sein.

apn=2"flrn>0

b, — 1, n=20
2-bp_1 n>0

Die Folgen (a,) und (by) sind gleich.
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.

1, falls n=0,1,2

an =
" apn—1+ap—o+ap_3 fallsn>2
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.

1, falls n=0,1,2
anp =
apn—1+ap—o+ap_3 fallsn>2

(an) =1,1,1,3,5,9,17,31, 57, 105, ...
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.

1, falls n=0,1,2
anp =
apn—1+ap—o+ap_3 fallsn>2

(an) =1,1,1,3,5,9,17,31, 57, 105, ...

an+1
bnzi
dn
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.

1, falls n=0,1,2
anp =
apn—1+ap—o+ap_3 fallsn>2

(an) =1,1,1,3,5,9,17,31, 57, 105, ...

an+1
bnzi
dn
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Wir nutzen die Tribonacci Folge (a,), um daraus eine neue Folge (b,) zu
bauen.

1, falls n=0,1,2
anp =
apn—1+ap—o+ap_3 fallsn>2

(an) =1,1,1,3,5,9,17,31, 57, 105, ...

an+1
bnzi
dn

Die Folge (b,) mit Dezimalzahlen:
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.00000000000000
.00000000000000
.00000000000000
.66666666666667
.80000000000000
.88888888888889
.82352941176471
.83870967741935
.84210526315789
.83809523809524
.83937823834197
.83943661971831
.83920367534456
.83930058284763
.83929379809869
.83928131922225
.83928810384049
.83928701345944
.83928642063210
.83928686638422

el = = e e T e T e S e e e e S N N =
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.00000000000000 . . . . .
100000000000000 Die Folgenglieder b, scheinen sich ei-

.00000000000000 nem Grenzwert b anzundhern.

.66666666666667
.80000000000000
.88888888888889
.82352941176471
.83870967741935
.84210526315789
.83809523809524
.83937823834197
.83943661971831
.83920367534456
.83930058284763
.83929379809869
.83928131922225
.83928810384049
.83928701345944
.83928642063210
.83928686638422

el = = e e T e T e S e e e e S N N =
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.00000000000000 . . . . .
100000000000000 Die Folgenglieder b, scheinen sich ei-

.00000000000000 nem Grenzwert b anzundhern.
.66666666666667

-80000000000000 Wir schreiben b= lim b,
.88888888888889 n—o00
.823529041176471

.83870967741935

.84210526315789

.83809523809524

.83937823834197

.83943661971831

.83920367534456

.83930058284763

.83929379809869

.839028131922225

.83928810384049

.83928701345944

.83928642063210

.839028686638422

el = = e e T e T e S e e e e S N N =
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el = = e e T e T e S e e e e S N N =

.00000000000000
.00000000000000
.00000000000000
.66666666666667
.80000000000000
.88888888888889
.82352941176471
.83870967741935
.84210526315789
.83809523809524
.83937823834197
.83943661971831
.83920367534456
.83930058284763
.83929379809869
.83928131922225
.83928810384049
.83928701345944
.83928642063210
.83928686638422

Die Folgenglieder b, scheinen sich ei-
nem Grenzwert b anzundhern.

Wir schreiben b = |lim b,

n—o0o

Es kann schwierig sein, den genauen
Grenzwert zu berechnen.
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el = = e e T e T e S e e e e S N N =

.00000000000000
.00000000000000
.00000000000000
.66666666666667
.80000000000000
.88888888888889
.82352941176471
.83870967741935
.84210526315789
.83809523809524
.83937823834197
.83943661971831
.83920367534456
.83930058284763
.83929379809869
.83928131922225
.83928810384049
.83928701345944
.83928642063210
.83928686638422

Die Folgenglieder b, scheinen sich ei-
nem Grenzwert b anzundhern.

Wir schreiben b = |lim b,

n—o0o

Es kann schwierig sein, den genauen
Grenzwert zu berechnen. Fiir b, ist es
die Zahl:

1V/19+3v33 - 1V19-3v33+ 2

~ 1,8392867552
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.
5,12,19, 26,33, ...
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.
5,12,19,26,33,... ap,=
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.
5,12,19,26,33,... a,=5+7n.
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz

zwischen den Folgengliedern.
5,12,19,26,33,... a,=5+7n.
Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten

zwischen den Folgengliedern.
3,6,12,24,48,96..
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten

zwischen den Folgengliedern.
3767 12724748,96 an =
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten

zwischen den Folgengliedern.
3,6,12,24,48,96.. a,=3-2".
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten
zwischen den Folgengliedern.

3,6,12,24,48,96.. a,=3-2".

Allgemeine Form einer geometrischen Folge: a, = ag - ¢".
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten
zwischen den Folgengliedern.

3,6,12,24,48,96.. a,=3-2".

Allgemeine Form einer geometrischen Folge: a, = ag - ¢".

Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.

5,12,19,26,33,... a,=5+7n.

Allgemeine Form einer arithmetischen Folge: a, = ag + d - n.

Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten
zwischen den Folgengliedern.

3,6,12,24,48,96.. a,=3-2".

Allgemeine Form einer geometrischen Folge: a, = ag - ¢".

Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.

Das geometrische Mittel zweier Zahlen a, b ist definiert als v/a - b.
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Wir untersuchen die Folge a, = ggig
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Wir untersuchen die Folge a, = ggig

dl =
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i H _ 6n+2
Wir ugtersuchen die Folge a, = 37735
4
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i H _ 6n+2
Wir ugtersuchen die Folge a, = 37735
4

41000 =
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6n+2
3n+3

Wir untersuchen die Folge a, =
dal = 8
31000 = 300§ 1.99866799866800

Folgen Vertiefungskurs Mathematik 8/20



Wir untersuchen die Folge a, = ggig
_ 8 _ 4

ay = 5 — g

a1000 = = 1.99866799866300

300
31000000 = §ggggg§ ~ 1.99999866666800

Folgen Vertiefungskurs Mathematik 8/20



Wir untersuchen die Folge a, = ggig
_ 8 _ 4

ay = 5 — g

a1000 = = 1.99866799866300

300
31000000 = §ggggg§ ~ 1.99999866666800

Die Folge nahert sich der 2, wir schreiben: lim a, = 2.
n—o00
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Wir untersuchen die Folge a, = g::[%
_8_ 4

ay = 5 — g

a1000 = ~ 1.99866799866300

300
31000000 = §ggggg§ ~ 1.99999866666800

Die Folge nahert sich der 2, wir schreiben: lim a, = 2.
n—o00

Damit driicken wir aus: Wir kdnnen mit a, beliebig nahe an die 2
kommen, wenn wir n nur groB genug wahlen.
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i H __ 6n+2
Wir ugtersuchen die Folge a, = 37735
4
31 = 6 = =

a1000 = 30?’8 ~ 1.99866799866800
31000000 = 3900093 ~ 1.99999866666800

Die Folge nahert sich der 2, wir schreiben: lim a, = 2.
n—o00

Damit driicken wir aus: Wir kdnnen mit a, beliebig nahe an die 2
kommen, wenn wir n nur groB genug wahlen.

Fiir jedes ¢ > 0 gibt es ein ng, so dass a, nicht mehr als € von 2 entfernt
ist, wenn nur n > ng ist.
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Definition Grenzwert: Eine Zahl a € R heiBt Grenzwert der Folge (a,)
wenn gilt:

Ve >03dng € NVn > ng: |a, —a| <€

Folgen Vertiefungskurs Mathematik 9/20



Definition Grenzwert: Eine Zahl a € R heiBt Grenzwert der Folge (a,)
wenn gilt:

Ve >03dng € NVn > ng: |a, —a| <€

Besitzt eine Folge (a,) eine Grenzwert a - auch Limes genannt - so sagt

man, die Folge konvergiert gegen a und schreibt dafiir lim a, = a oder
n—o0

(ap) — a fir a — 0.
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Definition Grenzwert: Eine Zahl a € R heiBt Grenzwert der Folge (a,)
wenn gilt:

Ve >03dng € NVn > ng: |a, —a| <€

Besitzt eine Folge (a,) eine Grenzwert a - auch Limes genannt - so sagt

man, die Folge konvergiert gegen a und schreibt dafiir lim a, = a oder
n—o0

(ap) — a fir a — 0.

Andere Formulierung: a heiBt Grenzwert der Folge (a,), wenn in jeder
(noch so kleinen) e-Umgebung von a fast alle Elemente der Folge liegen.

Folgen Vertiefungskurs Mathematik 9/20



n+1

Gegeben die Folge: a, = 7.

Behauptung: lim a, = 1.
n—o0
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n+1

Gegeben die Folge: a, = 7.

Behauptung: lim a, = 1.
n—o0

Beweis: Sei € > 0.
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Gegeben die Folge: a, = ZI; Behauptung: lim a, = 1.
n—o0

Beweis: Sei € > 0.
Wir miissen ein ng finden, so dass |a, — 1| < € fiir n > ng.
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n+1
n+2"

Gegeben die Folge: a, = Behauptung: lim a, = 1.
n—o0

Beweis: Sei € > 0.
Wir miissen ein ng finden, so dass |a, — 1| < € fiir n > ng.

|a,,—1|<e<:>1—zg<e<:>(n+2)—(n+1)<e(n+2)

slant2el-2<n
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n+1
n+2"

Gegeben die Folge: a, = Behauptung: lim a, = 1.
n—o0

Beweis: Sei € > 0.
Wir miissen ein ng finden, so dass |a, — 1| < € fiir n > ng.

lan— 1 <eesl-" cca(nt2)—(n+1)<e(n+2)

n+2
slant2el-2<n
Wihle als ng eine Zahl mit ng > 1 —2. O
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n+1
n+2"

Gegeben die Folge: a, = Behauptung: lim a, = 1.
n—o0

Beweis: Sei € > 0.
Wir miissen ein ng finden, so dass |a, — 1| < € fiir n > no.

lan— 1 <eesl-" cca(nt2)—(n+1)<e(n+2)

n+2
slant2el-2<n
Wihle als ng eine Zahl mit ng > 1 —2. O

Beispiel: fiir ¢ = 100 wahlen wir no = 98. Alle Folgenglieder nach agg
haben den Abstand kleiner als 100 zum Grenzwert 1.
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Folgen sind niitzlich fiir ndherungsweise Berechnungen.
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Folgen sind niitzlich fiir ndherungsweise Berechnungen. Wir betrachten die
ersten 7 Elemente der Folge

1 Xn
X1 1, Xp+1 Xh —+ 5
.00000000000000
.50000000000000
.41666666666667
.41421568627451
.41421356237469
.41421356237310
.41421356237310

e el e el el e
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Folgen sind niitzlich fiir ndherungsweise Berechnungen. Wir betrachten die
ersten 7 Elemente der Folge

1 Xn
X1 1, Xp+1 Xh —+ 5
.00000000000000
.50000000000000
.41666666666667
.41421568627451
.41421356237469
.41421356237310
.41421356237310

e el e el el e

Die Folge konvergiert gegen /2.
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Folgen sind niitzlich fiir ndherungsweise Berechnungen. Wir betrachten die
ersten 7 Elemente der Folge

1 Xn
X1 1, Xp+1 X% —+ 5
.00000000000000
.50000000000000
.41666666666667
.41421568627451
.41421356237469
.41421356237310
.41421356237310

e el e el el e

Die Folge konvergiert gegen v/2. Wenn man eine gute Naherung fiir v/2
bendtigt, muss man nur weit genug in der Folge fortschreiten.
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.

Die Folge heit nach unten beschrankt, wenn es eine Zahl s € R gibt,
mit s < a, fir alle n € N. s heiBt dann untere Schranke der Folge.
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.

Die Folge heit nach unten beschrankt, wenn es eine Zahl s € R gibt,
mit s < a, fir alle n € N. s heiBt dann untere Schranke der Folge.

Die Folge heiBt beschrankt, wenn sie nach oben und nach unten
beschrankt ist.
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.

Die Folge heit nach unten beschrankt, wenn es eine Zahl s € R gibt,
mit s < a, fir alle n € N. s heiBt dann untere Schranke der Folge.

Die Folge heiBt beschrankt, wenn sie nach oben und nach unten
beschrankt ist.

Beispiele: Die Folge (a,) mit a, = sin(n)
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.

Die Folge heit nach unten beschrankt, wenn es eine Zahl s € R gibt,
mit s < a, fir alle n € N. s heiBt dann untere Schranke der Folge.

Die Folge heiBt beschrankt, wenn sie nach oben und nach unten
beschrankt ist.

Beispiele: Die Folge (a,) mit a, = sin(n) ist eine beschrankte Folge.
Die Folge (a,) mit a, = n-sin(%")
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Definition: Eine Folge (a,) heiBt nach oben beschréankt, wenn es eine
Zahl S € R gibt, mit a, < S fiir alle n € N. S heiBt dann obere Schranke
der Folge.

Die Folge heit nach unten beschrankt, wenn es eine Zahl s € R gibt,
mit s < a, fir alle n € N. s heiBt dann untere Schranke der Folge.

Die Folge heiBt beschrankt, wenn sie nach oben und nach unten
beschrankt ist.

Beispiele: Die Folge (a,) mit a, = sin(n) ist eine beschrankte Folge.

Die Folge (a,) mit a, = n-sin(%") ist weder nach oben noch nach unten
beschrankt.

Folgen Vertiefungskurs Mathematik 12 /20



Satz: Jede konvergente Folge ist beschrankt.
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Satz: Jede konvergente Folge ist beschrankt.

Beweis: Sei (ap,) eine Folge und a ihr Grenzwert. Wiahle e = 1. Dann liegen
in der e-Umgebung U = (a — 1,a+ 1) fast alle Folgenglieder.
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Satz: Jede konvergente Folge ist beschrankt.

Beweis: Sei (ap,) eine Folge und a ihr Grenzwert. Wiahle e = 1. Dann liegen
in der e-Umgebung U = (a — 1,a+ 1) fast alle Folgenglieder. Die endlich
vielen Elemente auBerhalb von U haben ein groBtes und ein kleinstes
Element. Das sind die Schranken der Folge. Falls unterhalb oder oberhalb
von U keine Elemente vorhanden sind, wahlen wir den Rand von U als
Schranke. O
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Grenzwertsatze: Fiir konvergente Folgen (a,) und (b)) gilt:

(G1) Die Summenfolge (a, + by) ist konvergent und ihr Grenzwert ist die
Summe der Grenzwerte von (a,) und (bp):

lim (ap + by) = lim a, + lim b,

n—o00 n—o0 n—o0
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Grenzwertsatze: Fiir konvergente Folgen (a,) und (b)) gilt:

(G1) Die Summenfolge (a, + by) ist konvergent und ihr Grenzwert ist die
Summe der Grenzwerte von (a,) und (bp):

lim (ap + by) = lim a, + lim b,
n—o00 n—o0 n—o0
(G2) Die Produktfolge (ap - bp) ist konvergent und ihr Grenzwert ist das

Produkt der Grenzwerte von (a,) und (b,):
lim (ap - by) = lim a,- lim b,
n—o00 n—00 n—oo
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Grenzwertsatze: Fiir konvergente Folgen (a,) und (b)) gilt:

(G1) Die Summenfolge (a, + by) ist konvergent und ihr Grenzwert ist die
Summe der Grenzwerte von (a,) und (bp):

lim (ap + by) = lim a, + lim b,

n—o00 n—o0 n—o0

(G2) Die Produktfolge (ap - bp) ist konvergent und ihr Grenzwert ist das
Produkt der Grenzwerte von (a,) und (b,):

lim (ap - by) = lim a,- lim b,
— 00 n—o0

n n—00

(G3) Ist Ii_}m b, # 0, so sind fast alle b, # 0, und die (ggf. erst ab einem

Index N > 1 definierte) Quotientenfolge (?) konvergiert gegen:
n

3 lim an
. n— 0o

lim 22 = o=
n—oo =n n—oo "
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Grenzwertsatze: Fiir konvergente Folgen (a,) und (b,) gilt:

(G1) Die Summenfolge (a, + by) ist konvergent und ihr Grenzwert ist die
Summe der Grenzwerte von (a,) und (bp):

lim (ap + by) = lim a, + lim b,

n—oo n—oo n—oo

(G2) Die Produktfolge (ap - bp) ist konvergent und ihr Grenzwert ist das
Produkt der Grenzwerte von (a,) und (b,):

lim (ap - by) = lim a,- lim b,
— 00 n—o0

n n—00

(G3) Ist ILm b, # 0, so sind fast alle b, # 0, und die (ggf. erst ab einem

Index N > 1 definierte) Quotientenfolge (?) konvergiert gegen:
n

3 lim an
. n— oo

lim 2= 5055
n—oo =n n—oo "

Man darf also den Limes in Summe, Produkt und Quotient zweier Folgen
‘reinziehen’, wenn(!) die Ausgangs-Folgen konvergent sind.
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Zum Beweis der Grenzwertsidtze bendtigen wir:

Lemma: Fiir zwei reelle Zahlen x, y € R gilt die Dreiecksungleichung

Ix +y| < |x| + |y
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Zum Beweis der Grenzwertsidtze bendtigen wir:

Lemma: Fiir zwei reelle Zahlen x, y € R gilt die Dreiecksungleichung
x+yl <X+ 1yl

Beweis: Aus der Definition des Betrags folgt unmittelbar:
£x < |x| und £y < |y|
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Zum Beweis der Grenzwertsidtze bendtigen wir:

Lemma: Fiir zwei reelle Zahlen x, y € R gilt die Dreiecksungleichung

Ix +y| < |x| + |y

Beweis: Aus der Definition des Betrags folgt unmittelbar:
+x < |x| und £y < |y| Also gilt:
x+y < x| +ly[und —(x+y) = (=x) + (=y) < |x] + |yl.
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Zum Beweis der Grenzwertsidtze bendtigen wir:

Lemma: Fiir zwei reelle Zahlen x, y € R gilt die Dreiecksungleichung
x+yl <X+ 1yl

Beweis: Aus der Definition des Betrags folgt unmittelbar:

+x < |x| und £y < |y| Also gilt:

x+y < x|+ |yl und —(x +y) = (=x) + (=y) < x| +|yl.

Insgesamt gilt also: [x + y| < [x] + |y|. O.
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Beweis von G1:

Sei € > 0 gegeben.
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Beweis von G1:

Sei € > 0 gegeben. Dann gibt es ny, my € N mit |a, — a| < 5 fiirn >
und |b, — b| < § fiir n > ny.
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Beweis von G1:

Sei € > 0 gegeben. Dann gibt es ny, my € N mit |a, — a| < 5 fiirn >
und |b, — b| < % fiir n > ny. Wir setzen ng als das Maximum von n; und
ny.
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und |b, — b| < % fiir n > ny. Wir setzen ng als das Maximum von n; und
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Beweis von G1:

Sei € > 0 gegeben. Dann gibt es ny, my € N mit |a, — a| < 5 fiirn >

und |b, — b| < % fiir n > ny. Wir setzen ng als das Maximum von n; und

ny. Dann gilt fiir alle n > ng:

lap+bp—(a+b)| =lan—a+b,—b|<l|ap—a|+|by—b| <5+ 5=¢
O

Beweis von G2:

Sei € > 0 gegeben.
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Beweis von G1:

Sei € > 0 gegeben. Dann gibt es ny, my € N mit |a, — a| < 5 fiirn >

und |b, — b| < % fiir n > ny. Wir setzen ng als das Maximum von n; und

ny. Dann gilt fiir alle n > ng:

lap+bp—(a+b)| =lan—a+b,—b|<l|ap—a|+|by—b| <5+ 5=¢
O

Beweis von G2:

Sei € > 0 gegeben. Es gilt:

|anbn — ab| = |anbn + anb — anb — ab| = |ax(by — b) + (an — a)b| <

|an(bn = b)[ + [(an — a)b| = |an|(bn — b)| + [(an — a)||b].
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|anbn — ab| = |anbn + anb — anb — ab| = |ax(by — b) + (an — a)b| <

|an(bn = b)[ + [(an — a)b| = |an|(bn — b)| + [(an — a)||b].

Da (an) konvergiert, gibt es eine Schranke S mit der wir den ersten
Summanden abschitzen kénnen. |a,||(by, — b)| < S|(bn, — b)|.
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Da (an) konvergiert, gibt es eine Schranke S mit der wir den ersten
Summanden abschitzen kénnen. |a,||(by, — b)| < S|(bn, — b)|.

Wir wahlen n; und n; so, dass beide Summanden fiir groBere n kleiner als
5 sind.
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Beweis von G1:

Sei € > 0 gegeben. Dann gibt es ny, my € N mit |a, — a| < 5 fiirn >

und |b, — b| < % fiir n > ny. Wir setzen ng als das Maximum von n; und

ny. Dann gilt fiir alle n > ng:

lap+bp—(a+b)| =lan—a+b,—b|<l|ap—a|+|by—b| <5+ 5=¢
O

Beweis von G2:

Sei € > 0 gegeben. Es gilt:

|anbn — ab| = |anbn + anb — anb — ab| = |ax(by — b) + (an — a)b| <

|an(bn = b)[ + [(an — a)b| = |an|(bn — b)| + [(an — a)||b].

Da (an) konvergiert, gibt es eine Schranke S mit der wir den ersten
Summanden abschitzen kénnen. |a,||(by, — b)| < S|(bn, — b)|.

Wir wahlen n; und n; so, dass beide Summanden fiir groBere n kleiner als

5 sind. Fiir n > max{ny, n2} gilt dann:

|anbn — ab| < S|(by — b)| + |b[|(an —a)| < 5+ 5 =« O
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Definition: Eine Folge (a,) heiBt monoton wachsend, wenn a,1 > a,
fiir alle n € N gilt. Gilt sogar > anstelle von >, so heiBt die Folge streng
monoton wachsend.
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Entsprechend ist (streng) monoton fallend definiert.
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Definition: Eine Folge (a,) heiBt monoton wachsend, wenn a,1 > a,
fiir alle n € N gilt. Gilt sogar > anstelle von >, so heiBt die Folge streng
monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heiBt (streng) monoton, wenn sie (streng) monoton wachsend
oder (streng) monoton fallend ist.

Beispiele: Die Folge (a,) mit a, = n? ist streng monton wachsend.
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Definition: Eine Folge (a,) heiBt monoton wachsend, wenn a,1 > a,
fiir alle n € N gilt. Gilt sogar > anstelle von >, so heiBt die Folge streng
monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heiBt (streng) monoton, wenn sie (streng) monoton wachsend
oder (streng) monoton fallend ist.

Beispiele: Die Folge (a,) mit a, = n? ist streng monton wachsend.

Die Folge (b,) mit b, =1,1,2,2,3,3,4,4, ....
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Definition: Eine Folge (a,) heiBt monoton wachsend, wenn a,1 > a,
fiir alle n € N gilt. Gilt sogar > anstelle von >, so heiBt die Folge streng
monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heiBt (streng) monoton, wenn sie (streng) monoton wachsend
oder (streng) monoton fallend ist.

Beispiele: Die Folge (a,) mit a, = n? ist streng monton wachsend.

Die Folge (b,) mit b, =1,1,2,2,3,3,4,4,.... ist monton wachsend, aber
nicht streng monoton wachsend.
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Definition: Eine Folge (a,) heiBt monoton wachsend, wenn a,1 > a,
fiir alle n € N gilt. Gilt sogar > anstelle von >, so heiBt die Folge streng
monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heiBt (streng) monoton, wenn sie (streng) monoton wachsend
oder (streng) monoton fallend ist.

Beispiele: Die Folge (a,) mit a, = n? ist streng monton wachsend.

Die Folge (b,) mit b, =1,1,2,2,3,3,4,4,.... ist monton wachsend, aber
nicht streng monoton wachsend.

Andere Formulierung: Eine Folge ist monoton, wenn alle Folgenglieder in
dieselbe Richtung gehen.
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Satz (Montoniekriterium): Jede beschrankte monotone Folge
konvergiert.
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Satz (Montoniekriterium): Jede beschrankte monotone Folge
konvergiert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch
plausibel:
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Satz (Montoniekriterium): Jede beschrankte monotone Folge
konvergiert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch
plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste
obere Schranke. Das ist dann der Grenzwert.
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Satz (Montoniekriterium): Jede beschrankte monotone Folge
konvergiert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch
plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste
obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (a,,) sei gegeben durch a3 =1 und apy1 = Va, + 2.
Mit vollstandiger Induktion wir zeigen wir, dass (a,) streng monoton
wachst und beschrankt ist: 0 < a, < 2 fiir alle n € N.
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Satz (Montoniekriterium): Jede beschrankte monotone Folge
konvergiert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch
plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste
obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (a,) sei gegeben durch a; = 1 und a1 = Va, + 2.
Mit vollstandiger Induktion wir zeigen wir, dass (a,) streng monoton
wachst und beschrankt ist: 0 < a, < 2 fiir alle n € N. Also hat (a,) einen
Grenzwert. Der Grenzwert erfiillt die Gleichung x = v/x + 2, daraus
berechnen wir den Grenzwert a = 2.
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?

(an):0,—1,1,-2,2,—3,3,—4,4, .....
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?

(an): 0,—1,1,-2,2,—3,3,—4,4, ...

N S o falls n ungerade
n—\n
3 falls n gerade
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?
(an) :0,—-1,1,-2,2,-3,3,—4,4,.....

a {—”T“, falls n ungerade
y =

n
3 falls n gerade

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine
eindeutige Zuordnung zwischen den Elementen der beiden Mengen
herstellen kann.
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?
(an) :0,—-1,1,-2,2,-3,3,—4,4,.....

. —241 " falls n ungerade
"~ \n
3 falls n gerade

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine
eindeutige Zuordnung zwischen den Elementen der beiden Mengen
herstellen kann. Auf unendliche Mengen iibertragen zeigt die Folge: Es
gibt genauso viele natiirliche Zahlen wie ganze Zahlen.
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthilt?
(an) :0,—-1,1,-2,2,-3,3,—4,4,.....

. {—”T“, falls n ungerade
y =

n
3 falls n gerade

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine
eindeutige Zuordnung zwischen den Elementen der beiden Mengen
herstellen kann. Auf unendliche Mengen iibertragen zeigt die Folge: Es
gibt genauso viele natiirliche Zahlen wie ganze Zahlen.

Etwas Unendliches wird nicht notwendig kleiner, wenn man etwas
wegnimmt.

Folgen Vertiefungskurs Mathematik 19 /20



Exkurs: Gibt es eine Folge, die jede reelle Zahl enthalt?
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Exkurs: Gibt es eine Folge, die jede reelle Zahl enthalt?

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und
1 enthalt?
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Exkurs: Gibt es eine Folge, die jede reelle Zahl enthalt?

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und
1 enthalt?

Annahme: Es gibt Folge (a,), in der alle reellen Zahlen zwischen 0 und 1
vorkommen.
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1 enthalt?
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Dezimalstelle von a,.
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1 enthalt?

Annahme: Es gibt Folge (a,), in der alle reellen Zahlen zwischen 0 und 1
vorkommen. Jedes a, hat eine Dezimalentwicklung. Sei D die n-te
Dezimalstelle von a,. Wir konstruieren eine Zahl x mit

D+1, fallsD <7,

Die n-te Dezimalstelle von x =
D-1 falls D=8 oder D =9
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Exkurs: Gibt es eine Folge, die jede reelle Zahl enthalt?

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und
1 enthalt?

Annahme: Es gibt Folge (a,), in der alle reellen Zahlen zwischen 0 und 1
vorkommen. Jedes a, hat eine Dezimalentwicklung. Sei D die n-te
Dezimalstelle von a,. Wir konstruieren eine Zahl x mit

D+1, fallsD <7,

Die n-te Dezimalstelle von x =
D-1 falls D=8 oder D =9

Dann ist x eine reelle Zahl zwischen 0 und 1, kann aber kein Element der
Folge (an) sein, da es sich von jedem a, in mindestens einer Dezimalstelle
unterscheidet. ]
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