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Definition Folge: Eine (reelle) Folge ist eine Abbildung a : N → R, also
eine Vorschrift, die jeder natürlichen Zahl n das n-te Folgenglied a(n) ∈ R
zuordnet.

Wir schreiben an für das n-te Folgenglied und (an) für die Folge.

Beispiel: (an) = 1, 1, 2, 3, 5, 8, 13, ... ist eine Folge mit a4 = 3.

Wir können eine Folge auch ansehen als eine Funktion f : N → R mit
f (n) = an.

Wir können uns eine Folge vorstellen als eine Folge von Punkten auf der
Zahlengeraden.

Manchmal lässt man eine Folge beim Index 0 beginnen.
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Eine Folge kann explizit durch eine Formel für das n-te Folgenglied
gegeben sein.

an = n2 + 1 beschreibt die Folge
a1 = 2, a2 = 5, a3 = 10...

Eine Folge kann rekursiv durch Rückgriff auf frühere Folgenglieder gegeben
sein.

an =

{
1, n = 1, n = 2

an−1 + an−2 n > 2

a1 = 1, a2 = 1, a3 = 2, a4 = 3...
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Zwei Folgen sind dann gleich, wenn sie mit dem gleichen Index starten und
die entsprechenden Folgenglieder alle gleich sind. Dieselbe Folge kann uns
auf unterschiedliche Arten gegeben sein.

an = 2n für n ≥ 0

bn =

{
1, n = 0

2 · bn−1 n > 0

Die Folgen (an) und (bn) sind gleich.
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Wir nutzen die Tribonacci Folge (an), um daraus eine neue Folge (bn) zu
bauen.

an =

{
1, falls n = 0, 1, 2

an−1 + an−2 + an−3 falls n > 2

(an) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, ...

bn =
an+1

an

(bn) = 1, 1, 3,
5

3
,
9

5
,
17

9
,
31

17
,
57

31
,
105

57
...

Die Folge (bn) mit Dezimalzahlen:
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1.00000000000000
1.00000000000000
3.00000000000000
1.66666666666667
1.80000000000000
1.88888888888889
1.82352941176471
1.83870967741935
1.84210526315789
1.83809523809524
1.83937823834197
1.83943661971831
1.83920367534456
1.83930058284763
1.83929379809869
1.83928131922225
1.83928810384049
1.83928701345944
1.83928642063210
1.83928686638422

Die Folgenglieder bn scheinen sich ei-
nem Grenzwert b anzunähern.

Wir schreiben b = lim
n→∞

bn

Es kann schwierig sein, den genauen
Grenzwert zu berechnen. Für bn ist es
die Zahl:

1
3

3
√

19 + 3
√
33− 1

3
3
√
19− 3

√
33+ 1

3

≈ 1, 8392867552
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Eine arithmetische Folge ist ein Folge mit einer konstanten Differenz
zwischen den Folgengliedern.
5, 12, 19, 26, 33, ...

an = 5 + 7n.
Allgemeine Form einer arithmetischen Folge: an = a0 + d · n.
Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine geometrische Folge ist ein Folge mit einem konstanten Quotienten
zwischen den Folgengliedern.
3, 6, 12, 24, 48, 96.. an = 3 · 2n.
Allgemeine Form einer geometrischen Folge: an = a0 · qn.
Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.
Das geometrische Mittel zweier Zahlen a, b ist definiert als

√
a · b.
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Wir untersuchen die Folge an = 6n+2
3n+3

a1 =
8
6 = 4

3
a1000 =

6002
3003 ≈ 1.99866799866800

a1000000 =
6000002
3000003 ≈ 1.99999866666800

Die Folge nähert sich der 2, wir schreiben: lim
n→∞

an = 2.

Damit drücken wir aus: Wir können mit an beliebig nahe an die 2
kommen, wenn wir n nur groß genug wählen.

Für jedes ϵ > 0 gibt es ein n0, so dass an nicht mehr als ϵ von 2 entfernt
ist, wenn nur n > n0 ist.
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Definition Grenzwert: Eine Zahl a ∈ R heißt Grenzwert der Folge (an)
wenn gilt:

∀ϵ > 0 ∃n0 ∈ N ∀n > n0 : |an − a| < ϵ

Besitzt eine Folge (an) eine Grenzwert a - auch Limes genannt - so sagt
man, die Folge konvergiert gegen a und schreibt dafür lim

n→∞
an = a oder

(an) → a für a → ∞.

Andere Formulierung: a heißt Grenzwert der Folge (an), wenn in jeder
(noch so kleinen) ϵ-Umgebung von a fast alle Elemente der Folge liegen.
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Gegeben die Folge: an = n+1
n+2 . Behauptung: lim

n→∞
an = 1.

Beweis: Sei ϵ > 0.
Wir müssen ein n0 finden, so dass |an − 1| < ϵ für n > n0.

|an − 1| < ϵ ⇔ 1− n+1
n+2 < ϵ ⇔ (n + 2)− (n + 1) < ϵ(n + 2)

⇔ 1
ϵ < n + 2 ⇔ 1

ϵ − 2 < n.
Wähle als n0 eine Zahl mit n0 ≥ 1

ϵ − 2. □

Beispiel: für ϵ = 1
100 wählen wir n0 = 98. Alle Folgenglieder nach a98

haben den Abstand kleiner als 1
100 zum Grenzwert 1.
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Folgen sind nützlich für näherungsweise Berechnungen.

Wir betrachten die
ersten 7 Elemente der Folge

x1 = 1, xn+1 =
1

xn
+

xn
2

1.00000000000000
1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
1.41421356237310
1.41421356237310

Die Folge konvergiert gegen
√
2. Wenn man eine gute Näherung für

√
2

benötigt, muss man nur weit genug in der Folge fortschreiten.
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Definition: Eine Folge (an) heißt nach oben beschränkt, wenn es eine
Zahl S ∈ R gibt, mit an ≤ S für alle n ∈ N. S heißt dann obere Schranke
der Folge.

Die Folge heißt nach unten beschränkt, wenn es eine Zahl s ∈ R gibt,
mit s ≤ an für alle n ∈ N. s heißt dann untere Schranke der Folge.

Die Folge heißt beschränkt, wenn sie nach oben und nach unten
beschränkt ist.

Beispiele: Die Folge (an) mit an = sin(n) ist eine beschränkte Folge.
Die Folge (an) mit an = n · sin(πn2 ) ist weder nach oben noch nach unten
beschränkt.
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Satz: Jede konvergente Folge ist beschränkt.

Beweis: Sei (an) eine Folge und a ihr Grenzwert. Wähle ϵ = 1. Dann liegen
in der ϵ-Umgebung U = (a− 1, a+ 1) fast alle Folgenglieder. Die endlich
vielen Elemente außerhalb von U haben ein größtes und ein kleinstes
Element. Das sind die Schranken der Folge. Falls unterhalb oder oberhalb
von U keine Elemente vorhanden sind, wählen wir den Rand von U als
Schranke. □
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Element. Das sind die Schranken der Folge.

Falls unterhalb oder oberhalb
von U keine Elemente vorhanden sind, wählen wir den Rand von U als
Schranke. □

Folgen Vertiefungskurs Mathematik 13 / 20



Satz: Jede konvergente Folge ist beschränkt.

Beweis: Sei (an) eine Folge und a ihr Grenzwert. Wähle ϵ = 1. Dann liegen
in der ϵ-Umgebung U = (a− 1, a+ 1) fast alle Folgenglieder. Die endlich
vielen Elemente außerhalb von U haben ein größtes und ein kleinstes
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Grenzwertsätze: Für konvergente Folgen (an) und (bn) gilt:

(G1) Die Summenfolge (an + bn) ist konvergent und ihr Grenzwert ist die
Summe der Grenzwerte von (an) und (bn):
lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

(G2) Die Produktfolge (an · bn) ist konvergent und ihr Grenzwert ist das
Produkt der Grenzwerte von (an) und (bn):
lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn

(G3) Ist lim
n→∞

bn ̸= 0, so sind fast alle bn ̸= 0, und die (ggf. erst ab einem

Index N > 1 definierte) Quotientenfolge (
an
bn

) konvergiert gegen:

lim
n→∞

an
bn

=
lim

n→∞
an

lim
n→∞

bn

Man darf also den Limes in Summe, Produkt und Quotient zweier Folgen
‘reinziehen’, wenn(!) die Ausgangs-Folgen konvergent sind.
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Zum Beweis der Grenzwertsätze benötigen wir:

Lemma: Für zwei reelle Zahlen x , y ∈ R gilt die Dreiecksungleichung

|x + y | ≤ |x |+ |y |

Beweis: Aus der Definition des Betrags folgt unmittelbar:
±x ≤ |x | und ±y ≤ |y | Also gilt:
x + y ≤ |x |+ |y | und −(x + y) = (−x) + (−y) ≤ |x |+ |y |.
Insgesamt gilt also: |x + y | ≤ |x |+ |y |. □.
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Beweis von G1:

Sei ϵ > 0 gegeben.

Dann gibt es n1, n2 ∈ N mit |an − a| < ϵ
2 für n > n1

und |bn − b| < ϵ
2 für n > n2. Wir setzen n0 als das Maximum von n1 und

n2. Dann gilt für alle n > n0:
|an + bn − (a+ b)| = |an − a+ bn − b| ≤ |an − a|+ |bn − b| < ϵ

2 + ϵ
2 = ϵ

□

Beweis von G2:
Sei ϵ > 0 gegeben. Es gilt:
|anbn − ab| = |anbn + anb − anb − ab| = |an(bn − b) + (an − a)b| ≤
|an(bn − b)|+ |(an − a)b| = |an||(bn − b)|+ |(an − a)||b|.

Da (an) konvergiert, gibt es eine Schranke S mit der wir den ersten
Summanden abschätzen können. |an||(bn − b)| ≤ S |(bn − b)|.

Wir wählen n1 und n2 so, dass beide Summanden für größere n kleiner als
ϵ
2 sind. Für n > max{n1, n2} gilt dann:
|anbn − ab| ≤ S |(bn − b)|+ |b||(an − a)| ≤ ϵ

2 + ϵ
2 = ϵ. □
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Definition: Eine Folge (an) heißt monoton wachsend, wenn an+1 ≥ an
für alle n ∈ N gilt. Gilt sogar > anstelle von ≥, so heißt die Folge streng
monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heißt (streng) monoton, wenn sie (streng) monoton wachsend
oder (streng) monoton fallend ist.

Beispiele: Die Folge (an) mit an = n2 ist streng monton wachsend.

Die Folge (bn) mit bn = 1, 1, 2, 2, 3, 3, 4, 4, .... ist monton wachsend, aber
nicht streng monoton wachsend.

Andere Formulierung: Eine Folge ist monoton, wenn alle Folgenglieder in
dieselbe Richtung gehen.
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Satz (Montoniekriterium): Jede beschränkte monotone Folge
konvergiert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch
plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste
obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (an) sei gegeben durch a1 = 1 und an+1 =
√
an + 2.

Mit vollständiger Induktion wir zeigen wir, dass (an) streng monoton
wächst und beschränkt ist: 0 ≤ an ≤ 2 für alle n ∈ N. Also hat (an) einen
Grenzwert. Der Grenzwert erfüllt die Gleichung x =

√
x + 2, daraus

berechnen wir den Grenzwert a = 2.
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Grenzwert. Der Grenzwert erfüllt die Gleichung x =

√
x + 2, daraus

berechnen wir den Grenzwert a = 2.
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Exkurs: Gibt es eine Folge, die jede ganze Zahl enthält?

(an) : 0,−1, 1,−2, 2,−3, 3,−4, 4, .....

an =

{
−n+1

2 , falls n ungerade
n
2 falls n gerade

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine
eindeutige Zuordnung zwischen den Elementen der beiden Mengen
herstellen kann. Auf unendliche Mengen übertragen zeigt die Folge: Es
gibt genauso viele natürliche Zahlen wie ganze Zahlen.

Etwas Unendliches wird nicht notwendig kleiner, wenn man etwas
wegnimmt.
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Exkurs: Gibt es eine Folge, die jede reelle Zahl enthält?

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und
1 enthält?

Annahme: Es gibt Folge (an), in der alle reellen Zahlen zwischen 0 und 1
vorkommen. Jedes an hat eine Dezimalentwicklung. Sei D die n-te
Dezimalstelle von an. Wir konstruieren eine Zahl x mit

Die n-te Dezimalstelle von x =

{
D + 1, falls D ≤ 7,

D − 1 falls D = 8 oder D = 9

Dann ist x eine reelle Zahl zwischen 0 und 1 , kann aber kein Element der
Folge (an) sein, da es sich von jedem an in mindestens einer Dezimalstelle
unterscheidet. □
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