

A1 a)

Voraussetzung: $n \in \mathbb{N}$ und $n \geq 2$

Behauptung: n hat gerade Anzahl von Teilen

Die Aussage ist falsch.

Gegenbeispiel: $n = 4$ hat die Teiler 1, 2, 4

b) Voraussetzung: $n_1, n_2 \in \mathbb{N}$ und n_1, n_2 ungerade

Behauptung: $n_1 \cdot n_2$ ist ungerade

Beweis: Da n_1, n_2 ungerade, lassen Sie sich darstellen als $n_1 = 2k_1 + 1, n_2 = 2k_2 + 1$ für geeignete $k_1, k_2 \in \mathbb{N}$. Dann ist $n_1 \cdot n_2 = (2k_1 + 1)(2k_2 + 1) = 4k_1 k_2 + 2k_1 + 2k_2 + 1 = 2(2k_1 k_2 + k_1 + k_2) + 1$. Das ist eine ungerade Zahl \square

c) Voraussetzung: $n \in \mathbb{N}$ und n ungerade

Behauptung: n^3 ist ungerade

Beweis: Wenn n ungerade, dann ist $n \cdot n = n^2$ ungerade wg. b). Dann ist aber auch $n^2 \cdot n = n^3$ wg. b) ungerade. \square

d) Voraussetzung: $n \in \mathbb{N}$, $n^2 + 6n + 4$ ist ungerade.

Behauptung: n ist ungerade

Kontraposition $(a \wedge b) \Rightarrow c \Leftrightarrow (a \wedge \neg c) \Rightarrow \neg b$

Voraussetzung: $n \in \mathbb{N}$ und n ist gerade.

Behauptung: $n^2 + 6n + 4$ ist gerade.

Beweis: Wenn n gerade, dann läuft es sich darstellen als $n = 2k$ mit geeigneten $k \in \mathbb{N}$. Dann gilt

$n^2 + 6n + 4 = 4k^2 + 12k + 4 = 2(k^2 + 6k + 2)$. Dies ist eine gerade Zahl. \square

A2

Voraussetzung: a rational, b reell, b nicht rational

Behauptung: $a \cdot b$ nicht rational

Kontraposition:

Voraussetzung: a rational, b reell, $a \cdot b$ rational

Behauptung: b rational

Beweis: Da a und $a \cdot b$ rational, gibt es Darstellungen

$a = \frac{z_1}{n_1}$ und $a \cdot b = \frac{z_2}{n_2}$ mit $z_1, z_2, n_1, n_2 \in \mathbb{Z}$

Dann gilt: $\frac{z_1}{n_1} \cdot b = \frac{z_2}{n_2}$, also $b = \frac{z_2 \cdot n_1}{n_2 \cdot z_1}$. Da $z_2 \cdot n_1, n_2 \cdot z_1 \in \mathbb{Z}$ ist b rational \square

A3

a) Behauptung: $\sqrt{3}$ ist irrational.

Beweis (indirekt): Annahme $\sqrt{3} \in \mathbb{Q}$. Dann kann man $\sqrt{3}$ darstellen als vollständig gekürzten Bruch $\sqrt{3} = \frac{p}{q}$. Dann gilt: $3 \cdot q^2 = p^2$. Also ist p^2 durch 3 teilbar. Dann ist aber auch p durch 3 teilbar, denn die Primfaktorzerlegung von p^2 besteht aus der verdoppelten Primfaktorzerlegung von p . Also gilt $p = 3k$ für ein $k \in \mathbb{N}$. Damit ergibt sich: $3q^2 = p^2 = 9k^2$. Also $q^2 = 3k^2$. Damit ist q^2 durch 3 teilbar und also auch q . p und q sind also beide durch 3 teilbar, also ist $\frac{p}{q}$ nicht vollständig gekürzt, ein Widerspruch zur Annahme. \square .

b) Sei $x \in \mathbb{Q}$. Dann gilt es $p, q \in \mathbb{Z}$ mit $x = \frac{p}{q}$.

Annahme: $\sqrt{2} + x \in \mathbb{Q}$. Dann gilt $\sqrt{2} + x = \frac{a}{b}$ für geeignete $a, b \in \mathbb{Z}$.

Dann gilt, $\sqrt{2} = \frac{a}{b} - x = \frac{a}{b} - \frac{p}{q} = \frac{aq - bp}{bq}$. Dies ist eine rationale Zahl, da $aq - bp, bq \in \mathbb{Z}$. Dies ist ein Widerspruch zu der bekannten Tatsache, dass $\sqrt{2}$ irrational ist.

A4

$$\text{a) } \sum_{k=1}^n k^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{k=1}^n k^2 = 1 + 4 + 9 + \dots + n^2$$

$$\text{IA: (Induktionsanfang)} \quad n=1 : 1 = \frac{1}{6} \cdot 1 \cdot (1+1) \cdot (2 \cdot 1 + 1) = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3 = 1 \quad \checkmark$$

IS: (Induktionsschritt) Wir müssen zeigen:

$$1+4+\dots+n^2+(n+1)^2 = \frac{1}{6} \cdot (n+1) \cdot ((n+1)+1) \cdot (2(n+1)+1) \quad (\ast)$$

Die linke Seite formen wir mit der Induktionsvoraussetzung (IV) um.

$$\begin{aligned} 1+2+\dots+n^2+(n+1)^2 &= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2 \\ &= \frac{1}{6} (n+1) (n(2n+1) + 6(n+1)) \\ &= \frac{1}{6} (n+1) (2n^2 + n + 6n + 6) \\ &= \frac{1}{6} (n+1) (2n^2 + 7n + 6) \end{aligned}$$

Die rechte Seite von (\ast) :

$$\begin{aligned} &\frac{1}{6} (n+1) ((n+2)(2(n+1)+1) \\ &= \frac{1}{6} (n+1) ((n+2)(2n+3)) \\ &= \frac{1}{6} (n+1) (2n^2 + 3n + 4n + 6) \\ &= \frac{1}{6} (n+1) (2n^2 + 7n + 6) \end{aligned}$$

Damit ist Gleichung (\ast) gezeigt. \square

A4

b) $\sum_{k=1}^n k^3 = \frac{1}{4} n^2 (n+1)^2$

IA, $n=1$: $1 = \frac{1}{4} 1^2 (1+1)^2 = 1 \quad \checkmark$

IS: zu zeigen ist: $1+8+27+\dots+n^3+(n+1)^3 = \frac{1}{4} (n+1)^2 ((n+1)+1)^2 \quad (*)$

linke Seite von (*): $1+8+\dots+n^3+(n+1)^3 \stackrel{IV.}{=} \frac{1}{4} n^2 (n+1)^2 + (n+1)^3$

$$\begin{aligned} &= \frac{1}{4} (n+1)^2 (n^2 + 4(n+1)) \\ &= \frac{1}{4} (n+1)^2 (n^2 + 4n + 4) \end{aligned}$$

rechte Seite von (*): $\frac{1}{4} (n+1)^2 ((n+1)+1)^2 = \frac{1}{4} (n+1)^2 ((n+1)^2 + 2(n+1) + 1) = \frac{1}{4} (n+1)^2 (n^2 + 2n + 1 + 2n + 2 + 1) = \frac{1}{4} (n+1)^2 (n^2 + 4n + 4)$

Damit Gleichung (*) gezeigt. \square

c) $\sum_{k=1}^n 2k = n(n+1)$

IA ($n=1$): $2 = 1 \cdot (1+1) = 2 \quad \checkmark$

IS: zu zeigen ist: $2+4+\dots+2n+2(n+1) = (n+1)((n+1)+1) \quad (**)$

linke Seite von (**): $2+4+\dots+2n+2(n+1) \stackrel{IV.}{=} n(n+1) + 2(n+1) = (n+1)(n+2) = \text{rechte Seite von } (**)$ \square

d) 5 ist Teiler von $6^n - 1$

IA: ($n=1$) 5 ist Teiler von $6^1 - 1 = 5 \quad \checkmark$

IS: Wir müssen zeigen: 5 ist Teiler von $6^{n+1} - 1$

Nach IA ist 5 Teiler von $6^1 - 1$, also gibt es ein $k_1 \in \mathbb{N}$ mit:

$$6^1 - 1 = 5 \cdot k_1 \quad | \cdot 6$$

$$6^{n+1} - 6 = 5 \cdot 6 \cdot k_1 \quad | +5$$

$$6^{n+1} - 1 = 5 \cdot 6 \cdot k_1 + 5 = 5 \cdot (6k_1 + 1)$$

Also ist 5 auch ein Teiler von $6^{n+1} - 1 \quad \square$

e) 6 ist Teiler von $n^3 - n$

IA: ($n=1$) 6 ist Teiler von $1-1=0$ ✓

IS: Wir müssen zeigen: 6 ist Teiler von $(n+1)^3 - (n+1)$

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - (n+1) \\ = n^3 + 3n^2 + 2n$$

Nach IV ist 6 Teiler von $n^3 - n$, also gibt es $k \in \mathbb{N}$ mit:

$$6k = n^3 - n \quad | + 3n^2 + 3n$$

$$6k + 3n^2 + 3n = n^3 + 3n^2 + 2n \quad (\star)$$

Fall 1: n gerade, d.h. $n = 2k_1$ für ein $k_1 \in \mathbb{N}$.

Für die linke Seite von (\star) ergibt sich dann:

$$6k + 3 \cdot 4k_1^2 + 3 \cdot 2k_1 = 6(k + 2k_1^2 + k_1) = n^3 + 3n^2 + 2n$$

Dieser Term ist durch 6 teilbar.

Fall 2: n ungerade, d.h. $n = 2k_2 + 1$ für ein $k_2 \in \mathbb{N}$.

Für die linke Seite von (\star) ergibt sich dann:

$$\begin{aligned} & 6k + 3(2k_2 + 1)^2 + 3(2k_2 + 1) \\ &= 6k + 3(4k_2^2 + 4k_2 + 1) + 6k_2 + 3 \\ &= 6k + 12k_2^2 + 6k_2 + 3 + 6k_2 + 3 \\ &= 6k + 12k_2^2 + 12k_2 + 6 = 6(k + 2k_2^2 + 2k_2 + 1) \end{aligned}$$

Dieser Term ist durch 6 teilbar.

f) $2^n > n$

IA ($n=1$): $2^1 = 2 > 1$ ✓

IS: zu zeigen: $2^{n+1} > n+1$.

Nach IV dürfen wir annehmen: $2^n > n$

$$2^n > n \quad | \cdot 2$$

$$2^{n+1} > 2n = n+n \geq n+1$$

Also: $2^{n+1} > n+1 \quad \square$

g) $n^2 > 2n+1$ falls $n \geq 3$

IA ($n=3$): $3^2 = 9 > 2 \cdot 3 + 1 = 7$ ✓

IS: zu zeigen: $(n+1)^2 > 2(n+1) + 1 = 2n+3$

$$(n+1)^2 = n^2 + 2n + 1 > (2n+1) + (2n+1) \quad \text{IV.}$$

$$\begin{aligned} &= 4n+2 = 2n + \underbrace{2n+2}_{> 3, \text{ da } n \geq 3} > 2n+3 \end{aligned} \quad \square$$